## String Pheno @ IBS Daejeon

# Quark and lepton hierarchies from S4' modular flavor symmetry 

Junichiro Kawamura<br>Institute for Basic Science, CTPU

based on arXiv:2301.07439, 2302.11183 [PLB], 2307.today (hep-ph)
in collaboration with
Y.Abe (U. of Wisconsin), T.Higaki (Keio U.), T.Kobayashi (Hokkaido U.)

## Mass hierarchies

$>$ Masses in the Standard Model [SM]
$W, Z, H$
$u$
C
$d s$
b
$t$


Why so hierarchical ?

## Quark hierarchies

> Cabibbo-Kobayashi-Maskawa [CKM] matrix

$$
\begin{array}{lc}
M_{u} \\
M_{d} \\
W_{\mu}^{+} \overline{u_{i}} \delta_{i j} d_{j} & U_{L}^{\dagger} M_{u} U_{R}=\operatorname{diag}\left(m_{u}, m_{c}, m_{t}\right) \\
V_{L}^{\dagger} M_{d} V_{R}=\operatorname{diag}\left(m_{d}, m_{s}, m_{b}\right) \\
\text { al W-couplings } & \frac{\mathrm{g}}{\sqrt{2}} W_{\mu}^{+} \overline{u_{i}} V_{i j}^{C K M} d_{j} \\
\text { diagonal masses }
\end{array}
$$

CKM matrix $\quad V^{C K M}=U_{L}^{\dagger} V_{L} \sim\left(\begin{array}{ccc}0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.041 \\ 0.009 & 0.040 & 0.99\end{array}\right)$

CKM also has hierarchical structure

## Lepton hierarchies

$>$ charged lepton masses are hierarchical

$$
\left(m_{e}, m_{\mu}, m_{\tau}\right) \sim(0.5,106,1776) \mathrm{MeV}
$$

> neutrino masses are not so hierarchical

$$
\begin{gathered}
\Delta m_{21}^{2} \sim 10^{-5} \mathrm{eV}^{2}, \Delta m_{32}^{2} \sim 10^{-3} \mathrm{eV}^{2} \\
\rightarrow \quad m_{2} \sim 10^{-2.5}, m_{3} \sim 10^{-1.5} \mathrm{eV} \text { for } m_{1}<m_{2,3}
\end{gathered}
$$

> PMNS matrix has large mixing angles

$$
V^{\text {PMNS }} \sim\left(\begin{array}{lll}
0.8 & 0.6 & 0.2 \\
0.3 & 0.6 & 0.7 \\
0.5 & 0.6 & 0.7
\end{array}\right)
$$

## Aim of this work

Understand the hierarchies in quark and lepton hierarchies
> Modular flavor symmetry
what if Yukawa couplings (masses) are modular form ?
Altarelli, Feruglio, 2010

$$
Y=Y(\tau) \rightarrow(c \tau+d)^{k} \rho(r) Y(\tau)
$$

- non-Abelian discrete flavor symmetry
- Froggatt-Nielsen [FN] mechanism by residual symmetry
- modular symmetry appears in string models

|  | T.Kobayashi, S.Nagamoto et.al. '17 '18 '20 |
| :---: | :---: |
| e.g. talks by H.P.Niles, T.Kobayashi (Tue) | J.Lauer, J.Mas, H.P.Nilless '89, '91, S.Ferrara, D.Lust, S.Theisen, ' 89 |
|  | A.Baur, H.P.Nilles, A.Trautner, |
|  | PKS.Vaudrevange S.Ramos-Sanches, '19, '20 |

$\rightarrow$
explain the quark and lepton hierarchies

## Outline

1. Introduction
2. Modular flavor symmetry
3. $\quad S_{4}^{\prime}$ model for quark and lepton hierarchies
4. Summary

## Modular group

$>$ modular group $\Gamma \Leftrightarrow$ special linear group

$$
\Gamma:=S L(2, \mathbb{Z})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

generators

$$
\begin{gathered}
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad R=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
S^{2}=R, \quad(S T)^{3}=R^{2}=1, \quad T R=R T
\end{gathered}
$$

$>$ action to modulus $\tau$ : complex scalar with $\operatorname{Im} \tau>0$

$$
\tau \xrightarrow{\Gamma} \frac{a \tau+b}{c \tau+d} \quad \stackrel{S}{\tau}-1 / \tau \quad \stackrel{T}{\rightarrow} \tau+1 \quad \stackrel{R}{\rightarrow} \tau
$$

## Finite modular group $\Gamma_{N}$

$>$ Congruence group $\Gamma(N) \quad$ level $N \in \mathbb{N}$

$$
\begin{gathered}
\Gamma(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma:=\operatorname{SL}(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right.\right\} \\
\text { ex) } T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \rightarrow T^{N}=\left(\begin{array}{cc}
1 & N \\
0 & 1
\end{array}\right) \in \Gamma(N)
\end{gathered}
$$

$>$ finite modular group $\Gamma_{N}:=\Gamma / \Gamma(N)$

$$
S^{2}=R, \quad(S T)^{3}=R^{2}=1, \quad T R=R T, \quad T^{N}=1
$$

$\rightarrow$ isomorphic to non-Abelian discrete symmetries for $N \leq 5$

$$
\Gamma_{2} \simeq S_{3}^{\prime}, \quad \Gamma_{3} \simeq A_{4}^{\prime}, \quad \Gamma_{4} \simeq S_{4}^{\prime}, \quad \Gamma_{5} \simeq A_{5}^{\prime} \quad \text { *e.g. } \Gamma_{4} / \mathbb{Z}_{2}^{R} \simeq S_{4}
$$

## 

$>$ Representations under $S_{4}=S_{4}^{\prime} / \mathbb{Z}_{2}^{R}$

- singlets $1,1^{\prime}$, doublet 2 and triplets $3,3^{\prime}$
- there are $\mathbb{Z}_{2}^{R}$-odd representations denoted by $\hat{r}$ under $S_{4}^{\prime}$
$>$ Modular form of rep. $r$ and modular weight $k \in \mathbb{N}$
is a holomorphic function of $\tau$ transforms as

$$
Y_{r}^{(k)}=Y_{r}^{(k)}(\tau) \rightarrow(c \tau+d)^{k} \rho(r) Y_{r}^{(k)}(\tau) \quad \text { modulus } \tau \xrightarrow{\Gamma} \frac{a \tau+b}{c \tau+d}
$$

$$
\rho(r) \text { : representation matrix of } r
$$

- the number of rep. is fixed for a given weight $k$
- one $\widehat{3}$ at $k=1$, one 2 and one $3^{\prime}$ at $k=2$, and so on


## Residual $\mathbb{Z}_{4}^{T}$ symmetry

$$
S^{2}=R, \quad(S T)^{3}=R^{2}=1, \quad T^{4}=1
$$

$>$ At $\tau \sim i \infty$
$\tau$ is insensitive to $\tau \stackrel{T}{\rightarrow} \tau+1 \quad \mathbb{Z}_{4}^{T}$ symmetry is unbroken
$>$ Modular forms at $\operatorname{Im} \tau \gg 1$

$$
Y_{3}^{(1)}(\tau) \sim\left(\begin{array}{c}
\sqrt{2} \epsilon(\tau) \\
\epsilon(\tau)^{2} \\
-1
\end{array}\right) \begin{gathered}
\mathbb{Z}_{4}^{T} \text {-charge } \\
1 \\
2
\end{gathered} \quad \epsilon(\tau) \sim 2 \exp \left(\frac{2 \pi i \tau}{4}\right) \ll 1
$$

powers of $\epsilon \ll 1$ is controlled by $\mathbb{Z}_{4}^{T}$ charge
$\Rightarrow$ Froggatt-Nielsen [FN] mechanism $\quad\left(\frac{\langle\phi\rangle}{\Lambda}\right)^{n} \Leftrightarrow \epsilon(\tau)^{n}$
natural and predictive realization of FN mech.

## Outline

1. Introduction
2. Modular flavor symmetry
3. $S_{4}^{\prime}$ model for quark and lepton hierarchies
4. Summary

## Representations of $S_{4}^{\prime}$

$>$ Quark sector

$$
u^{c}=\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
\text { RH up quark } & \hat{1}^{\prime} & d^{c}=1 \oplus 1 \oplus 1 & \begin{array}{l}
(2,3,1) \\
\text { RH down quark }
\end{array} & \begin{array}{l}
\mathbb{Z}_{4}^{T} \text {-charge } \\
\text { LH doublet quark }
\end{array} &
\end{array}
$$

small angles and mass hierarchy mainly from $Q$
$>$ Lepton sector

$$
\begin{aligned}
& \begin{array}{llll}
0 & 0 & 0 & (2,3,1)
\end{array} \mathbb{Z}_{4}^{T} \text {-charge } \\
& L=1 \oplus 1 \oplus 1 \quad e^{c}=3 \\
& \text { LH doublet lepton RH charged lepton }
\end{aligned}
$$

large angles from $L$, while mass hierarchy from $e^{c}$

## Quark and lepton hierarchies

$>$ masses and CKM /PMNS matrix

$$
\begin{aligned}
& \left(m_{u}, m_{c}, m_{t}\right) \sim\left(\epsilon^{3}, \epsilon, 1\right) m_{t} \\
\left(m_{d}, m_{s}, m_{b}\right) & \sim\left(m_{e}, m_{\mu}, m_{\tau}\right) \sim\left(\epsilon^{3}, \epsilon^{2}, \epsilon\right) m_{t} / t_{\beta} \\
V^{C K M} & \sim\left(\begin{array}{ccc}
1 & \epsilon & \epsilon^{2} \\
\epsilon & 1 & \epsilon \\
\epsilon^{2} & \epsilon & 1
\end{array}\right) \quad V^{P M N S} \sim\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

$$
N=4 \text { is minimal to have } \epsilon^{3}
$$

*see also models based on $A_{4}$ ('22 Petcov\&Tanimoto), $\Gamma_{6}, A_{4}^{3}$ ('23 S.Kikuchi, T.Kobayashi, S.Takada et.al) for Q
$>$ Additional factors

- powers of $(2 \operatorname{Im} \tau)^{k}$ from canonical normalization
- numerical factors from modular forms

Fit results

$$
\tan \beta=3.7, \operatorname{Im} \tau=2.8,\left|\alpha_{3}^{1}\right|=0.0012
$$

$$
\begin{aligned}
& \frac{1}{\left|\alpha_{3}^{1}\right|}\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2}^{1} \\
\alpha_{2}^{2} \\
\alpha_{3}^{1} \\
\alpha_{3}^{2}
\end{array}\right)=\left(\begin{array}{c}
-0.69 \\
-1.8 \\
0.84 \\
e^{-1.6 i} \\
-1.1
\end{array}\right) \quad \frac{1}{\left|\alpha_{3}^{1}\right|}\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\beta_{3}^{1} \\
\beta_{3}^{2}
\end{array}\right)=\left(\begin{array}{c}
1.6 \\
-1.8 \\
0.6 \\
-0.62
\end{array}\right) \quad \frac{1}{\left|\alpha_{3}^{1}\right|}\left(\begin{array}{c}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}^{1} \\
\gamma_{3}^{2}
\end{array}\right)=\left(\begin{array}{c}
-1.7 \\
-2.8 \\
0.80 e^{0.93 i} \\
2.75
\end{array}\right) \\
& \frac{1}{\left|\alpha_{3}^{1}\right|}\left(\begin{array}{l}
c_{11} \\
c_{22} \\
c_{33} \\
c_{13}
\end{array}\right)=\left(\begin{array}{c}
1.7 \\
-1.9 \\
-0.67 \\
-5.4
\end{array}\right) \quad \\
& \text { • coefficients are in }[0.62,5.4]
\end{aligned}
$$

| obs. | value | center | error |
| :---: | :---: | :---: | :---: |
| $y_{u} / 10^{-6}$ | 4.44 | 2.85 | 0.88 |
| $y_{c} / 10^{-3}$ | 1.481 | 1.479 | 0.052 |
| $y_{t}$ | 0.5322 | 0.5320 | 0.0053 |
| $y_{d} / 10^{-5}$ | 1.94 | 1.93 | 0.21 |
| $y_{s} / 10^{-4}$ | 3.88 | 3.82 | 0.21 |
| $y_{b} / 10^{-2}$ | 2.097 | 2.100 | 0.021 |
| $y_{e} / 10^{-6}$ | 7.816 | 7.816 | 0.047 |
| $y_{\mu} / 10^{-3}$ | 1.6496 | 1.6500 | 0.0099 |
| $y_{\tau} / 10^{-2}$ | 2.808 | 2.805 | 0.028 |


| $s_{12}$ | 0.22520 | 0.22541 | 0.00072 |
| :---: | :---: | :---: | :---: |
| $s_{23} / 10^{-2}$ | 4.007 | 3.998 | 0.064 |
| $s_{13} / 10^{-3}$ | 3.43 | 3.48 | 0.13 |
| $\delta_{\text {CKM }}$ | 1.2395 | 1.2080 | 0.0540 |
| $R_{32}^{21} / 10^{-2}$ | 3.053 | 3.070 | 0.084 |
| $s_{12}^{2}$ | 0.302 | 0.307 | 0.013 |
| $s_{23}^{2}$ | 0.547 | 0.546 | 0.021 |
| $s_{13}^{2} / 10^{-2}$ | 2.203 | 2.200 | 0.070 |
| $\delta_{\text {PMNS }}$ | -0.85 | -2.01 | 0.63 |

Well-fit $(<1.8 \sigma)$ to the data by $\mathcal{O}(1)$ coefficients

## Summary

$>$ Modular flavor symmetry realizes

- generalized non-Abelian discrete symmetry
- hierarchical Yukawa matrix via Froggatt-Nielsen mechanisms
$>S_{4}^{\prime}$ model
- maybe minimal possibility to realize the $Q$ and $L$ hierarchy
- successfully explains the quark and lepton hierarchies
- can not be embedded into e.g. SU(5) GUT
can be done in $\Gamma_{6}^{\prime}$ 2307.today
Thank you


## backups

## Modular weights

$$
\begin{aligned}
& \left(k_{u_{1}}, k_{u_{2}}, k_{u_{3}}\right)=(0,4,3), \quad\left(k_{d_{1}}, k_{d_{2}}, k_{d_{3}}\right)=(0,2,4), k_{Q}=4 \\
& \left(L_{1}, k_{L_{2}}, k_{L_{3}}\right)=(0,2,4), \quad k_{e}=4
\end{aligned}
$$

$\rightarrow$ Modular weights of Yukawa couplings

$$
k_{Y_{u}}=(4,8,7), \quad k_{Y_{d}}=k_{Y_{e}}=(4,6,8), \quad k_{c_{i j}}=2 i+2 j-4
$$

- minimal combinations for rank-3 Yukawa matrices up to $\mathcal{O}\left(\epsilon^{3}\right)$
- neutrino mass hierarchy from $2 \operatorname{Im} \tau \sim 5$
$>$ Modular forms:

$$
\text { ex) } Y_{3}^{(7)} \sim \epsilon\left(1, \sqrt{2} \epsilon, 7 \sqrt{2} \epsilon^{2}\right)
$$

$\rightarrow$ Cabbibo angle is enhanced as $s_{C} \sim 7 \sqrt{2} \epsilon \sim 0.2$

## Yukawa couplings ${ }_{230211183}$

$$
\begin{aligned}
& W_{u}=H_{u}\left\{\sum_{a=1}^{2} \alpha_{a}\left(Q Y_{3}^{\left(k_{u_{a}}+k_{Q}\right)}\right)_{1} u_{i}^{c}+\alpha_{3}\left(Q Y_{\widehat{3}}^{\left(k_{u_{3}}+k_{Q}\right)} u_{3}^{c}\right)_{1}\right\} \\
& W_{d}=H_{d}\left\{\sum _ { i = 1 3 } \beta _ { i } \left(Q Y_{3}^{\left.\left.\left(k_{d_{i}}+k_{Q}\right)\right)_{1} d_{i}^{c}+\gamma_{i}\left(L_{i} Y_{3}^{\left(k_{e}+k_{L_{i}}\right)} e^{c}\right)_{1}\right\}}\right.\right. \\
& W_{v}=\sum_{i, j=1}^{3} \frac{c_{i j}}{\Lambda} Y_{1}^{\left(k_{L_{i}}+k_{L_{j}}\right)} L_{i} H_{u} L_{j} H_{u} \quad(\cdots)_{1}: \text { singlet combination } \\
& \alpha_{i}, \beta_{i}, \gamma_{i}, c_{i j}: \mathcal{O}(1) \text { coefficients }
\end{aligned}
$$

For neutrinos, we assume

- Majorana masses from Weinberg operator
- $L_{i}$ is singlet, s.t. Yukawa is singlet $\left(L_{i}=\hat{1} \rightarrow Y\right.$ is $\left.1^{\prime}\right)$


## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\text {rid }}$ ) quark model

$>$ representations
$Z_{4}^{T}$-charge

$$
\begin{aligned}
& Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2} \\
\rightarrow \quad & Y_{u} \sim\left(\begin{array}{cc}
\epsilon^{3} & \epsilon^{2} \\
\epsilon & 1
\end{array}\right) \quad Y_{d} \sim\left(\begin{array}{cc}
\epsilon^{2} & \epsilon^{2} \\
1 & 1
\end{array}\right) \\
\rightarrow \quad & \left(y_{u}, y_{d}, y_{b}\right) \sim\left(\epsilon^{3}, \epsilon^{2}, 1\right) \quad V_{\text {CKM }} \sim\left(\begin{array}{cc}
1 & \epsilon^{2} \\
\epsilon^{2} & 1
\end{array}\right)
\end{aligned}
$$

$>$ bad example 1: $Q=1^{\prime} \oplus 1^{\prime} \quad \bar{d}=2$

$$
\rightarrow Y_{d} \sim\left(\begin{array}{ll}
\epsilon^{2} & 1 \\
\epsilon^{2} & 1
\end{array}\right) \rightarrow\left(y_{d}, y_{b}\right) \sim\left(\epsilon^{2}, 1\right) \quad V_{\text {СКМ }} \sim\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

hierarchical down masses, but no hierarchy in CKM (good for PMNS)

## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\left.3^{\text {d }}\right)}$ ) quark model

$>$ representations $Z_{4}^{T}$-charge

$$
\begin{aligned}
& Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2} \\
\rightarrow \quad & Y_{u} \sim\left(\begin{array}{cc}
\epsilon^{3} & \epsilon^{2} \\
\epsilon & 1
\end{array}\right) \quad Y_{d} \sim\left(\begin{array}{cc}
\epsilon^{2} & \epsilon^{2} \\
1 & 1
\end{array}\right) \\
\rightarrow \quad & \left(y_{u}, y_{d}, y_{b}\right) \sim\left(\epsilon^{3}, \epsilon^{2}, 1\right) \quad V_{\text {СКМ }} \sim\left(\begin{array}{cc}
1 & \epsilon^{2} \\
\epsilon^{2} & 1
\end{array}\right)
\end{aligned}
$$

$>$ bad example 2: $\bar{d}=1 \oplus 1\binom{0}{0}$

$$
\rightarrow Y_{d} \sim\left(\begin{array}{cc}
1 & 1 \\
\epsilon^{2} & \epsilon^{2}
\end{array}\right) \rightarrow\left(y_{d}, y_{b}\right) \sim\left(\epsilon^{2}, 1\right) \quad V_{\text {CKM }} \sim\left(\begin{array}{cc}
\epsilon^{2} & 1 \\
1 & \epsilon^{2}
\end{array}\right)
$$

CKM is not identity for $\epsilon \rightarrow 0$

## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\text {rid }}$ ) quark model

$>$ representations and modular weights

$$
Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2}
$$

mod. weights: $\quad k_{Q}=0 \quad k_{u}=(5,6) \quad k_{d}=(2,4)$
wo/ loss of generality
$>$ modular forms

$$
\begin{array}{ll}
Y_{u} \sim\left(\begin{array}{ll}
Y_{\hat{2}}^{\left(k_{u}^{1}\right)} & \left.Y_{2}^{\left(k_{u}^{2}\right)}\right)
\end{array} Y_{d} \sim\left(\begin{array}{l}
Y_{2}^{\left(k_{d}^{1}\right)}
\end{array} Y_{2}^{\left(k_{d}^{2}\right)}\right)\right. \\
\hat{2} \text { exists for } k \geq 5 & 2 \text { exists for } k \geq 2
\end{array}
$$

$$
\text { Why not e.g. } k_{u}=(5,2), k_{d}=(2,2) \text { ? }
$$

## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\left.3^{\text {t }}\right)}$ ) quark model

$>$ representations and modular weights $Z_{4}^{T}$-charge

$$
Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2}
$$

mod. weights: $\quad k_{Q}=0 \quad k_{u}=(5,6) \quad k_{d}=(2,4)$
wo/ loss of generality
$>$ bad example 1: $k_{d}=(2,2)$
$\rightarrow Y_{d} \sim\left(\begin{array}{ll}\beta_{1} Y_{2}^{(2)} & \beta_{2} Y_{2}^{(2)}\end{array}\right) \quad$ same modular form in two columns
$\rightarrow \quad Y_{d}$ is rank-1, so down quark is massless
$\rightarrow k_{d}=(2,4)$ is the minimal possibility for $y_{d} \neq 0$

## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\text {rid }}$ ) quark model

$>$ representations and modular weights

$$
Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2}
$$

mod. weights: $\quad k_{Q}=0 \quad k_{u}=(5,6) \quad k_{d}=(2,4)$
wo/ loss of generality
$>$ bad example 3: $k_{u}=(5,2) \quad t:=\sqrt{2 \operatorname{Im} \tau} \sim \sqrt{5}$
can. norm.
$\xrightarrow{\longrightarrow} Y_{u} \sim t^{2}\left(\begin{array}{cc}\epsilon^{3} t^{3} & \epsilon^{2} \\ \epsilon t^{3} & 1\end{array}\right) \quad Y_{d} \sim\left(\begin{array}{cc}\epsilon^{2} & \epsilon^{2} t^{2} \\ 1 & t^{2}\end{array}\right)$
$\rightarrow \quad\left(y_{u}, y_{d}, y_{b}\right) \sim\left(\epsilon^{3} t^{3}, \epsilon^{2}, t^{2}\right) \quad y_{b}, y_{u}$ are too large
$\rightarrow \quad k_{u}^{2}=6$ is minimal possibility

## Toy model 2 flavor ( $1^{\text {st }}$ and $3^{\left.r^{\text {rd }}\right)}$ ) quark model

$>$ representations
$Z_{4}^{T}$-charge

$$
\begin{gathered}
Q=2\binom{0}{2} \quad \bar{u}=\hat{1}^{\prime} \oplus 1^{\prime}\binom{1}{2} \quad \bar{d}=1^{\prime} \oplus 1^{\prime}\binom{2}{2} \\
k_{u}=(5,6) \quad k_{d}=(2,4) \\
\rightarrow \quad Y_{u} \sim t^{6}\left(\begin{array}{cc}
\epsilon^{3} t^{-1} & \epsilon^{2} \\
\epsilon t^{-1} & 1
\end{array}\right) \quad Y_{d} \sim t^{6}\left(\begin{array}{cc}
\epsilon^{2} t^{-4} & \epsilon^{2} t^{-2} \\
t^{-4} & t^{-2}
\end{array}\right) \\
\rightarrow \quad\left(y_{u}, y_{d}, y_{b}\right) \sim\left(\epsilon^{3} t^{-1}, \epsilon^{2} t^{-4}, t^{-2}\right) \quad V_{\text {СКМ }} \sim\left(\begin{array}{cc}
1 & \epsilon^{2} \\
\epsilon^{2} & 1
\end{array}\right)
\end{gathered}
$$

$\rightarrow \quad$ this may be the minimal possibility

## $S_{3}$ symmetry

the coefficients have the "hierarchy" structure

$$
\alpha_{1} \ll \alpha_{2}, \alpha_{3} \quad \beta_{11} \gg \beta_{21}, \beta_{22}, \beta_{23}
$$

first low is smaller (larger) than others in up (down) quarks
$>S_{3}$ model with another modulus $\tau_{2}$

$$
\begin{aligned}
& d^{c}, q_{1} \text { : singlet } 1 u^{c}, q_{2} \text { : non-trivial singlet } 1^{\prime} \\
& \rightarrow Y_{u} \propto\left(\begin{array}{ccc}
\epsilon_{2} & \epsilon_{2} & \epsilon_{2} \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \alpha_{1} \\
& \alpha_{2}, \alpha_{3}
\end{aligned} \quad Y_{d} \propto\left(\begin{array}{ccc}
1 & 1 & 1 \\
\epsilon_{2} & \epsilon_{2} & \epsilon_{2} \\
\epsilon_{2} & \epsilon_{2} & \epsilon_{2}
\end{array}\right) \quad \begin{aligned}
& \beta_{11} \\
& \beta_{21}, \beta_{22}, \beta_{23}
\end{aligned}
$$

the hierarchy is explained by $\epsilon_{2}\left(\tau_{2}\right) \sim 0.1$

## Canonical normalization

> modular invariant kinetic term

$$
\text { kinetic term } \frac{\bar{Q} Q}{(-i \tau+i \bar{\tau})^{k_{q}}} \quad \rightarrow \quad \bar{Q} Q
$$

canonical basis

Yukawa coup. $\quad Y^{\left(k_{Y}\right)}(\tau) \quad \longrightarrow \quad(2 \operatorname{Im} \tau)^{k_{Y} / 2} Y^{\left(k_{Y}\right)}$
$>$ When $\epsilon(\tau) \ll 1$

$$
\epsilon(\tau) \sim 0.05 \rightarrow t:=2 \operatorname{Im} \tau \sim 5 \text { gives additional structure }
$$

another FN-like mechanism controlled by modular weights

## Spontaneous CP violation

$>$ from $S_{4}^{\prime}$

$$
\epsilon(\tau) \sim 2 \exp \left(\frac{2 \pi \tau i}{4}\right) \text { is a complex parameter }
$$

However, it induces only unphysical phases in CKM matrix up to $\epsilon^{3}$
$\rightarrow$ spontaneous CP violation is too small $\sim \epsilon^{4}$
$>$ from $S_{3}$
CPV from $\epsilon_{2} \sim 0.1$ does not physical phase up to $\epsilon_{2}$
However, $\epsilon_{2}^{2} \sim 0.01$ ( $\mathbb{Z}_{2}^{T}$ neutral) is enough for CKM phase
$\Rightarrow$ moderate CP violation from $S_{3}$

## Quark hierarchies

$>$ masses and CKM matrix

$$
\begin{aligned}
& \left(m_{u}, m_{c}, m_{t}\right) \sim\left(\epsilon^{3}, \epsilon, 1\right) m_{t} \\
& \left(m_{d}, m_{s}, m_{b}\right) \sim \epsilon^{p}\left(\epsilon^{2}, \epsilon^{2}, 1\right) m_{t} / t_{\beta}
\end{aligned} \quad V^{C K M} \sim\left(\begin{array}{ccc}
1 & 1 & \epsilon^{2} \\
1 & 1 & \epsilon^{2} \\
\epsilon^{2} & \epsilon^{2} & 1
\end{array}\right) \quad \begin{aligned}
& \epsilon \sim 0.05 \\
& p=0,1 \\
& t_{\beta}=v_{u} / v_{d}
\end{aligned}
$$

- $N=4$ is the minimal number for the hierarchy with $\epsilon^{3}$
- $\mathcal{O}(0.1)$ deviations could be explained by modular forms
$>$ representations of quarks for $p=1$
c.f. Novichkov, Penedo, Petkov, 21'
there is only one combination of reps. for the quark hierarchy *
* assume no coexistence of $\mathbb{Z}_{2}^{R}$-even and -odd states in same quark
$\mathbb{Z}_{4}^{T}$-charge : $\quad(2,3,1)$

$$
u^{c}=3
$$

RH up quark

$$
d^{c}=\stackrel{2}{1^{\prime}} \oplus \stackrel{2}{1^{\prime}} \oplus \stackrel{2}{1^{\prime}}
$$

RH down quark
$(0,2)$
$Q=1 \oplus 2$
LH doublet quark

## Representation matrices in $S_{4}^{\prime}$

$$
\rho_{S}(2)=\frac{1}{2}\left(\begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & 1
\end{array}\right), \quad \rho_{T}(2)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

and

$$
\rho_{S}(3)=-\frac{1}{2}\left(\begin{array}{ccc}
0 & \sqrt{2} & \sqrt{2} \\
\sqrt{2} & -1 & 1 \\
\sqrt{2} & 1 & -1
\end{array}\right), \quad \rho_{T}(3)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -i & 0 \\
0 & 0 & i
\end{array}\right) .
$$

The primed and hatted representations are related as

$$
\begin{aligned}
\rho_{S}(r) & =-\rho_{S}\left(r^{\prime}\right)=-i \rho_{S}(\hat{r})=i \rho_{S}\left(\hat{r}^{\prime}\right), \\
\rho_{T}(r) & =-\rho_{T}\left(r^{\prime}\right)=i \rho_{T}(\hat{r})=-i \rho_{T}\left(\hat{r}^{\prime}\right), \\
\mathbb{I}=\rho_{R}(r) & =\rho_{R}\left(r^{\prime}\right)=-\rho_{R}(\hat{r})=-\rho_{R}\left(\hat{r}^{\prime}\right) .
\end{aligned}
$$

$$
\tau \sim i \infty
$$

$$
Y_{1} \sim 1, \quad Y_{1^{\prime}} \sim \epsilon^{2}, \quad Y_{\hat{1}} \sim \epsilon^{3}, \quad Y_{\hat{1}^{\prime}} \sim \epsilon, \quad Y_{2} \sim\binom{1}{\epsilon^{2}}, \quad Y_{\hat{2}} \sim\binom{\epsilon^{3}}{\epsilon},
$$

$$
Y_{3} \sim\left(\begin{array}{c}
\epsilon^{2} \\
\epsilon^{3} \\
\epsilon
\end{array}\right), \quad Y_{3^{\prime}} \sim\left(\begin{array}{c}
1 \\
\epsilon \\
\epsilon^{3}
\end{array}\right), \quad Y_{\hat{3}} \sim\left(\begin{array}{c}
\epsilon \\
\epsilon^{2} \\
1
\end{array}\right), \quad Y_{\hat{3}^{\prime}} \sim\left(\begin{array}{c}
\epsilon^{3} \\
1 \\
\epsilon^{2}
\end{array}\right),
$$

## Yukawa matrices

$>$ model for $p=1$

$$
\begin{aligned}
& Y_{d}=\left(\begin{array}{ccc}
\beta_{11} Y_{1}^{(6)} & 0 & 0 \\
-\beta_{2}^{2}\left[Y_{1}^{(2)}(8)\right]_{2} \\
\beta_{21}^{2}\left[Y_{2}^{2(8)}(8)\right]_{1} & -\beta_{22}\left[Y_{22}^{(6)}\right]_{2}^{(6)} & \left.-\beta_{23}^{(6)}\right]_{1} \\
\left.\beta_{23}\left[Y_{2}^{(4)}\right]_{2}^{(4)}\right]_{1}
\end{array}\right),
\end{aligned}
$$

## $>$ model for $p=0$

$$
\begin{aligned}
& \left(-2 \alpha_{3}^{i \gamma}\left[Y_{3}^{i \gamma(6)}\right]_{1} \quad \alpha_{3}^{i \gamma}\left[Y_{3^{i}}^{i,(6)}\right]_{3}-\sqrt{3} \alpha_{2}\left[Y_{3}^{(6)}\right]_{2} \quad \alpha_{3}^{i \gamma}\left[Y_{3}^{i \gamma(6)}\right]_{2}-\sqrt{3} \alpha_{2}\left[Y_{3}^{(6)}\right]_{3}\right) \\
& Y_{d}=\left(\begin{array}{ccc}
\beta_{11} Y^{(9)} & 0 & 0 \\
\beta_{21}\left[Y_{2}^{(9)}\right]_{1} & \beta_{22}\left[Y_{2}^{(7)}\right]_{1} & \left.\beta_{23} Y_{Y}^{(5)}\right]_{1} \\
\beta_{21}\left[Y_{2}^{(9)}\right]_{2} & \beta_{22}\left[Y_{2}^{(7)}\right]_{2} & \beta_{23}\left[Y_{2}^{(5)}\right]_{2}
\end{array}\right) .
\end{aligned}
$$

Model for $p=0 \quad u^{c}=3 \quad d^{c}=\hat{1}^{i} \oplus \hat{1}^{\top} \oplus \hat{1}^{\prime} Q=1 \oplus 2$ $\begin{array}{llllll}d_{1}^{c} & d_{2}^{c} & d_{3}^{c} & q_{1} & q_{2}\end{array}$

$$
k_{u}=2, \quad\left(k_{d_{1}}, k_{d_{2}}, k_{d_{3}}\right)=(53,1), \quad\left(k_{q_{1}}, k_{q_{2}}\right)=(4,4)
$$

$$
\tan \beta=1.6, \tau=1.5+2.7 i,\left|\alpha_{3}\right|=0.0013
$$

$$
\begin{aligned}
& \frac{1}{\left|\alpha_{3}\right|}\left(\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-0.27 \\
-1.7 \\
e^{-3.1 i} \\
-1.4
\end{array}\right) \\
& \frac{1}{\left|\alpha_{3}\right|}\left(\begin{array}{l}
\beta_{11} \\
\beta_{21} \\
\beta_{22} \\
\beta_{23}
\end{array}\right)=\left(\begin{array}{c}
-6.9 \\
0.13 \\
0.28 \\
0.41
\end{array}\right)
\end{aligned}
$$

| obs. | value | center | error |
| :---: | :---: | :---: | :---: |
| $y_{u} / 10^{6}$ | 2.9 | 2.9 | 1.3 |
| $y_{c} / 10^{3}$ | 1.560 | 1.508 | 0.095 |
| $y_{t}$ | 0.5464 | 0.50464 | 0.0084 |
| $y_{d} / 10^{6}$ | 9.00 | 9.06 | 0.87 |
| $y_{s} / 10^{4}$ | 1.73 | 1.79 | 0.14 |
| $y_{b} / 10^{2}$ | 1.011 | 0.994 | 0.013 |
| $s_{12}$ | 0.2274 | 0.2274 | 0.0007 |
| $s_{23} / 10^{2}$ | 3.991 | 3.989 | 0.065 |
| $s_{13} / 10^{3}$ | 3.47 | 3.47 | 0.13 |
| $\delta_{\mathrm{CP}}$ | 1.204 | 1.208 | 0.054 |

our model exp. error

- similar to the model for $p=1$, but with $\tan \beta \sim 1$
- the sizes of coefficients are in $[0.13,6.9]$, ratio is 50


## Rank condition

$>$ e.g. if $k_{d}=(4,2,2), k_{Q}=(2,0)$
$Y_{d}=\left(\begin{array}{ccc}\beta_{11} Y_{1^{\prime}}^{(6)} & 0 & 0 \\ \beta_{21} Y_{2}^{(4)} & \beta_{22} Y_{2}^{(2)} & \beta_{23} Y_{2}^{(2)}\end{array}\right)$ is "rank-2" up to $\epsilon^{3} \rightarrow$ need larger weights
\# \# of representations * reps. are hatted for odd weights

| weight | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| $1^{\prime}$ | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 2 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 |
| 3 | 1 | 0 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| $3^{\prime}$ | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 |

## \# of representations under $S_{4}^{\prime}$

| weight | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 |
| $1^{\prime}$ | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 2 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 1 | 2 | 2 |
| 3 | 1 | 0 | 1 | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 3 |
| $3^{\prime}$ | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 |

* reps. for odd weights are hatted ones
there are $2 k+1$ independent modular forms at a weight $k$


## Bad case for CKM hierarchy

$>$ Quark masses

$$
\left(m_{u}, m_{c}, m_{t}\right) \sim\left(\epsilon^{3}, \epsilon, 1\right) m_{t} \quad\left(m_{d}, m_{s}, m_{b}\right) \sim \epsilon\left(\epsilon^{2}, \epsilon, 1\right) m_{t} / t_{\beta}
$$

is also realized if
c.f. Novichkov, Penedo, Petkov, 21'

$$
\begin{array}{cccc}
(2,3,1) & 2 & 0 & 0 \\
Q=3
\end{array} \quad u^{c}=1^{\prime} \oplus 1 \oplus 1 \quad d^{c}=1 \oplus 1 \oplus 1
$$

> Yukawa hierarchies

$$
\begin{aligned}
Y_{u} & \sim\left(\begin{array}{ccc}
\epsilon^{2} & \epsilon^{2} & 1 \\
\epsilon & \epsilon & \epsilon^{3} \\
\epsilon^{3} & \epsilon^{3} & \epsilon
\end{array}\right)\left(\begin{array}{l}
t \\
c \\
u
\end{array}\right)_{L} \quad Y_{d} \sim\left(\begin{array}{ccc}
\epsilon^{2} & \epsilon^{2} & \epsilon^{2} \\
\epsilon & \epsilon & \epsilon \\
\epsilon^{3} & \epsilon^{3} & \epsilon^{3}
\end{array}\right) \quad\left(\begin{array}{l}
S \\
b \\
d
\end{array}\right)_{L} \\
& \longrightarrow V^{C K M} \sim\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\mathcal{O}(\epsilon) \quad \text { not identity at LO }
\end{aligned}
$$

