Hairy Black Holes by Spontaneous Symmetry Breaking^{1 2}

Miok Park (IBS-CTPU, Daejeon, S. Korea)

"String Phenomenology 2023"

Center for Theoretical Physics of the Universe, Institute for Basic Science, Deajeon, S. Korea

July 06, 2023

¹2205.00907, Phys.Rev.D 106 (2022) 8, 084024 ²2305.19814

Test general relativity

Detection of gravitational waves

- The direct detection of gravitational waves from the merger of binary black holes was a major breakthrough in physics in recent decades.
- One of the important missions of LIGO or gravitational waves is to test general relativity
- general relativity alone struggles to explain the presence of dark matter, dark energy, and inflationary expansion.
- To improve general relativity, many alternative theories of gravity have been proposed.

Let us consider EsGB theory

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2\kappa^2} - \frac{1}{2} \nabla_\alpha \varphi \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{1}$$

$$\mathcal{G} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2 \tag{2}$$

³G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett., vol. 120, no. 13, p. 131102, 2018.

⁴B.-H. Lee, W. Lee, and D. Ro, Phys. Rev. D, vol. 99, no. 2, p. 024002, 2019.

⁵Alexandros Papageorgiou, Chan Park, and Miok Park, Phys.Rev.D 106 (2022) 8, 084024 o a c

Let us consider EsGB theory

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2\kappa^2} - \frac{1}{2} \nabla_\alpha \varphi \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{1}$$

$$\mathcal{G} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2 \tag{2}$$

• yields 2^{nd} order differential equation (topological in 4-d): Hondenski theory

³G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett., vol. 120, no. 13, p. 131102, 2018.

⁴B.-H. Lee, W. Lee, and D. Ro, Phys. Rev. D, vol. 99, no. 2, p. 024002, 2019.

⁵Alexandros Papageorgiou, Chan Park, and Miok Park, Phys.Rev.D 106 (2022) 8,≡084024 ∽ ... ○

Let us consider EsGB theory

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2\kappa^2} - \frac{1}{2} \nabla_\alpha \varphi \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{1}$$

$$\mathcal{G} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2 \tag{2}$$

- yields 2^{nd} order differential equation (topological in 4-d): Hondenski theory
- evasion of no-hair theorem^{3 4 5}

³G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett., vol. 120, no. 13, p. 131102, 2018.

⁴B.-H. Lee, W. Lee, and D. Ro, Phys. Rev. D, vol. 99, no. 2, p. 024002, 2019.

⁵Alexandros Papageorgiou, Chan Park, and Miok Park, Phys.Rev.D 106 (2022) 8, 084024 🔗 🤉 🤈

Let us consider EsGB theory

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2\kappa^2} - \frac{1}{2} \nabla_\alpha \varphi \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{1}$$

$$\mathcal{G} = R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} - 4R_{\mu\nu}R^{\mu\nu} + R^2 \tag{2}$$

- ullet yields 2^{nd} order differential equation (topological in 4-d): Hondenski theory
- evasion of no-hair theorem^{3 4 5}

If $f(\varphi_{\infty})=0$ or $\varphi_1=0$, the no-hair theorem is evaded

when
$$f(\varphi) > 0$$

If $f(\varphi_\infty) \neq 0$ and $\varphi_1 \neq 0$, the no-hair theorem fails. Solutions might exist

when
$$f(\varphi) > 0$$
 and $f(\varphi) < 0$

³G. Antoniou, A. Bakopoulos, and P. Kanti, Phys. Rev. Lett., vol. 120, no. 13, p. 131102, 2018.

⁴B.-H. Lee, W. Lee, and D. Ro, Phys. Rev. D, vol. 99, no. 2, p. 024002, 2019.

⁵Alexandros Papageorgiou, Chan Park, and Miok Park, Phys.Rev.D 106 (2022) 8, 8084024

Hairy Black Holes for in EsGB

Our metric ansatz

$$ds^2 = -A(r)dt^2 + \frac{1}{B(r)}dr^2 + r^2d\Omega_2,$$

Boundary conditions

Near horizon :
$$A(r) \sim A_h \epsilon$$
, $B(r) \sim B_h \epsilon$, $\varphi(r) \sim \varphi_h + \varphi_{h,1} \epsilon$
Near infinity : $A(r) \sim 1$, $B(r) \sim 1$, $\varphi(r) \sim \varphi_{\infty}$

where

$$\varphi'(r_h) = \varphi_{h,1} = -\frac{r_h}{4\dot{f}_h} \left(1 \mp \sqrt{1 - \frac{96}{r_h^4} \dot{f}_h^2} \right), \qquad B_h = \frac{2}{r_h} \left(1 \pm \sqrt{1 - \frac{96}{r_h^4} \dot{f}_h^2} \right)^{-1}$$

• To avoid $\varphi''(r_h)$ being divergent the inside of the root should not be zero, namely

$$\dot{f}_h^2 < \frac{r_h^4}{96}$$
.

3/22

Hairy Black Holes for $f = \alpha e^{\gamma \varphi}$ in EsGB

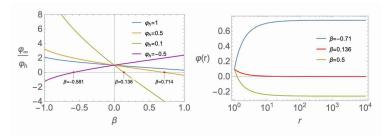


FIG. 2. For $f = \alpha e^{\gamma \varphi}$ (left) $\varphi_{\infty}/\varphi_h$ vs β and (right) $\varphi(r)$ for different values of β fixing $\varphi_h = 0.1$

Hairy Black Holes for $f = \alpha \varphi^2$ in EsGB

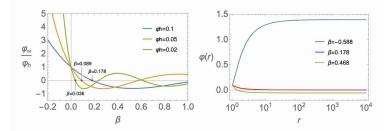


FIG. 4. For $f = \alpha \varphi^2$, (left) $\varphi_{\infty}/\varphi_h$ vs β and (right) $\varphi(r)$ for different values of β fixing $\varphi_h = 0.1$

Formation of Hairy Black Holes^{6 7 8}

"How hairy black holes acquire their hair from non-hairy ones?"

4 D F 4 B F 4 B F

6/22

⁶H. O. Silva, J. Sakstein, L. Gualtieri, T. P. Sotiriou, and E. Berti, "Spontaneous scalarization of black holes and compact stars from a gauss-bonnet coupling," Phys. Rev. Lett., vol. 120, p. 131104. Mar 2018.

⁷Blázquez-Salcedo, D. D. Doneva, J. Kunz, and S. S. Yazadjiev, "Radial perturbations of the scalarized Einstein-Gauss-Bonnet black holes," Phys. Rev. D, vol. 98, no. 8, p. 084011, 2018.

⁸Boris Latosh, Miok Park, 2305.19814

Spontaneous Symmetry Breaking (SSB)

"The underlying theory has a symmetry while the underlying vacuum state does not share the same symmetry with the theory."

• Global symmetry : $\varphi(r) \to \varphi(r) e^{i\chi}$ for global U(1)

$$\mathcal{L} = \nabla^{\mu} \varphi^* \nabla_{\mu} \varphi - V(\varphi), \qquad V(\varphi) = -\mu^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2$$

• Gauge symmetry : $\varphi(r) \to \varphi(r) e^{i\chi(r)}$ for local U(1)

$$\mathcal{L} = D^{\mu} \varphi^* D_{\mu} \varphi - V(\varphi) - \frac{1}{4} F^2, \qquad V(\varphi) = -\mu^2 \varphi^* \varphi + \lambda (\varphi^* \varphi)^2$$

: Ginzburg-Landau theory, superconductivity

 Higgs mechanism in standard model: responsible for giving mass to elementary particles in standard model.

(ロ) (回) (回) (目) (目) (目) (の)

Miok Park (IBS-CTPU)

We are interested in the situation that

"Scalar fields are about to grow from non-hairy black holes. Finally the non-hairy evolves to hairy black holes."

physical fields are the excitation above the vacuum

We are interested in the situation that

"Scalar fields are about to grow from non-hairy black holes. Finally the non-hairy evolves to hairy black holes."

- physical fields are the excitation above the vacuum
- $\bullet \ \ "V = -f(\varphi)\mathcal{G}"$ as an "interacting potential" :
 - effective near the black hole horizon
 - not effective at infinity $(V \to 0 \text{ as } r \to \infty, \text{ since } \mathcal{G} \to 0 \text{ as } r \to \infty)$

8/22

We are interested in the situation that

"Scalar fields are about to grow from non-hairy black holes. Finally the non-hairy evolves to hairy black holes."

- physical fields are the excitation above the vacuum
- " $V=-f(\varphi)\mathcal{G}$ " as an "interacting potential" : expected SSB to occur near the horizon
 - effective near the black hole horizon
 - not effective at infinity $(V \to 0 \text{ as } r \to \infty, \text{ since } \mathcal{G} \to 0 \text{ as } r \to \infty)$

8/22

We are interested in the situation that

"Scalar fields are about to grow from non-hairy black holes. Finally the non-hairy evolves to hairy black holes."

- physical fields are the excitation above the vacuum
- " $V=-f(\varphi)\mathcal{G}$ " as an "interacting potential" : expected SSB to occur near the horizon
 - effective near the black hole horizon
 - not effective at infinity $(V \to 0 \text{ as } r \to \infty, \text{ since } \mathcal{G} \to 0 \text{ as } r \to \infty)$
- ullet scalar hair is about to form from the non-hairy ones : $arphi_h$ is small ($|arphi_h|<rac{3}{10}$)

EsGB theory with global U(1): $\alpha < 0$

The following Lagrangian respects the global U(1) symmetry : $\varphi(r) \to e^{i\chi} \varphi(r)$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \nabla_\alpha \varphi^* \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{3}$$

$$\mathcal{L}_{\varphi} = -\nabla_{\alpha} \varphi^* \nabla^{\alpha} \varphi + f(\varphi) \mathcal{G} = T - V, \qquad V = -f(\varphi) \mathcal{G}, \tag{4}$$

$$f(\varphi) = \alpha \, \varphi^*(r)\varphi(r) - \lambda \left(\varphi^*(r)\varphi(r)\right)^2, \qquad (\lambda > 0)$$
(5)

EsGB theory with global U(1): $\alpha < 0$

The following Lagrangian respects the global U(1) symmetry : $\varphi(r) \to e^{i\chi} \varphi(r)$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \nabla_\alpha \varphi^* \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{3}$$

$$\mathcal{L}_{\varphi} = -\nabla_{\alpha} \varphi^* \nabla^{\alpha} \varphi + f(\varphi) \mathcal{G} = T - V, \qquad V = -f(\varphi) \mathcal{G}, \tag{4}$$

$$f(\varphi) = \alpha \, \varphi^*(r)\varphi(r) - \lambda \left(\varphi^*(r)\varphi(r)\right)^2, \qquad (\lambda > 0)$$
(5)

In the presence of symmetry, the conserved current is defined as

$$\partial_{\alpha}J^{\alpha} = 0, \qquad J_{\alpha} = i g \left(\varphi^* \partial_{\alpha} \varphi - \varphi \partial_{\alpha} \varphi^* \right).$$

EsGB theory with global U(1): $\alpha < 0$

The following Lagrangian respects the global U(1) symmetry : $\varphi(r) \to e^{i\chi} \varphi(r)$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \nabla_\alpha \varphi^* \nabla^\alpha \varphi + f(\varphi) \mathcal{G} \right], \tag{3}$$

$$\mathcal{L}_{\varphi} = -\nabla_{\alpha} \varphi^* \nabla^{\alpha} \varphi + f(\varphi) \mathcal{G} = T - V, \qquad V = -f(\varphi) \mathcal{G}, \tag{4}$$

$$f(\varphi) = \alpha \, \varphi^*(r)\varphi(r) - \lambda \left(\varphi^*(r)\varphi(r)\right)^2, \qquad (\lambda > 0)$$
(5)

In the presence of symmetry, the conserved current is defined as

$$\partial_{\alpha} J^{\alpha} = 0, \qquad J_{\alpha} = i g \left(\varphi^* \partial_{\alpha} \varphi - \varphi \partial_{\alpha} \varphi^* \right).$$

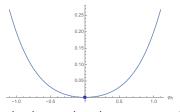
The flux for a timelike hypersurface near the horizon is given by

$$\int_{\Sigma} J_{\alpha} n^{\alpha} \sqrt{-h} \, d^{3}y = \int_{\Sigma} \left[g(\varphi_{2} \partial_{r} \varphi_{1} - \varphi_{1} \partial_{r} \varphi_{2}) \right] \left[\sqrt{A(r)B(r)} \, r^{2} \sin \theta \, d\theta \, d\phi \, dt \right] = 0$$

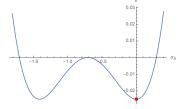
where

$$\varphi(r) = \frac{1}{\sqrt{2}} \left(\varphi_1(r) + i \, \varphi_2(r) \right)$$

"When $\alpha < 0$, vacuum is symmetric under global U(1)"



"When $\alpha>0$, vacuum is changed and not symmetric under global U(1)"



Miok Park (IBS-CTPU)

EsGB theory with global U(1): $\alpha > 0$

When $\alpha > 0$: V forms degenerate vacuums and the stable minima are described by

$$\langle \varphi \rangle = v e^{i\beta}, \qquad v = \sqrt{\frac{\alpha}{2\lambda}}$$
 (6)

We expand a field around a ground state v by reparameterizing it as follows

$$\varphi(r) = \left(v + \frac{\sigma(r)}{\sqrt{2}}\right)e^{i\theta(r)}.\tag{7}$$

the new Lagrangian is written as

$$\mathcal{L}_{\varphi} = -\frac{1}{2} \nabla_{\alpha} \sigma(r) \nabla^{\alpha} \sigma(r) - \left(v + \frac{\sigma(r)}{\sqrt{2}} \right)^{2} \nabla_{\alpha} \theta(r) \nabla^{\alpha} \theta(r) + f(\sigma) \mathcal{G}$$
 (8)

where

$$f(\sigma) = -\alpha \, \sigma(r)^2 - \sqrt{\alpha \, \lambda} \, \sigma(r)^3 - \frac{\lambda}{4} \, \sigma(r)^4. \tag{9}$$

Field $\theta(r)$ is decoupled from the system, and the solution for $\theta'(r)$ reads

$$\theta'(r) = \frac{c_2}{4r^2\sqrt{A(r)B(r)}} \left(v + \frac{\sigma(r)}{\sqrt{2}}\right)^{-2}$$

Field $\theta(r)$ is decoupled from the system, and the solution for $\theta'(r)$ reads

$$\theta'(r) = \frac{c_2}{4r^2\sqrt{A(r)B(r)}} \left(v + \frac{\sigma(r)}{\sqrt{2}}\right)^{-2}$$

The flux for a timelike hypersurface

$$\int_{\Sigma} J_{\alpha} n^{\alpha} \sqrt{-h} \, d^{3}y = \int_{\Sigma} \left[-2g \left(v + \frac{\sigma(r)}{\sqrt{2}} \right)^{2} \theta'(r) \right] \left[\sqrt{A(r)B(r)} \, r^{2} \sin \theta d\theta d\phi dt \right] = -8\pi g c_{2}$$

Field $\theta(r)$ is decoupled from the system, and the solution for $\theta'(r)$ reads

$$\theta'(r) = \frac{c_2}{4r^2\sqrt{A(r)B(r)}} \left(v + \frac{\sigma(r)}{\sqrt{2}}\right)^{-2}$$

The flux for a timelike hypersurface

$$\int_{\Sigma} J_{\alpha} n^{\alpha} \sqrt{-h} \, d^{3}y = \int_{\Sigma} \left[-2g \left(v + \frac{\sigma(r)}{\sqrt{2}} \right)^{2} \theta'(r) \right] \left[\sqrt{A(r)B(r)} \, r^{2} \sin \theta d\theta d\phi dt \right] = -8\pi g c_{2}$$

 $c_2 = 0$ is required.

Field $\theta(r)$ is decoupled from the system, and the solution for $\theta'(r)$ reads

$$\theta'(r) = \frac{c_2}{4r^2\sqrt{A(r)B(r)}} \left(v + \frac{\sigma(r)}{\sqrt{2}}\right)^{-2}$$

The flux for a timelike hypersurface

$$\int\limits_{\Sigma} J_{\alpha} n^{\alpha} \sqrt{-h} \, d^3y = \int\limits_{\Sigma} \left[-2g \left(v + \frac{\sigma(r)}{\sqrt{2}} \right)^2 \theta'(r) \right] \left[\sqrt{A(r)B(r)} \, r^2 \sin \theta d\theta d\phi dt \right] = -8\pi g c_2$$

 $c_2 = 0$ is required.

"The hairy black holes in this theory can only possess trivial Goldstone bosons hair."

symmetric and symmetry-broken phase

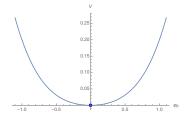


Figure: symmetric (left) and symmetry-broken phase (right)

13/22

Miok Park (IBS-CTPU) Hairy Black Holes by SSB July 06, 2023

symmetric and symmetry-broken phase

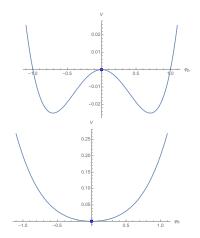


Figure: symmetric (left) and symmetry-broken phase (right)

Miok Park (IBS-CTPU) Hairy Black Holes by SSB July 06, 2023 13/22

symmetric and symmetry-broken phase

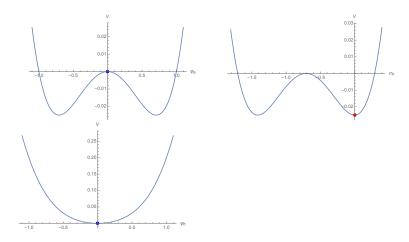


Figure: symmetric (left) and symmetry-broken phase (right)

13/22

Miok Park (IBS-CTPU) Hairy Black Holes by SSB July 06, 2023

scalar field perturbation in EsGB: instability

The linearized equation then becomes

$$\left(\nabla_{\alpha}\nabla^{\alpha} + f_{\varphi^*\varphi}\mathcal{G}\right)\delta\varphi(r) = 0, \qquad m_{\text{eff}}^2 = -f_{\varphi^*\varphi}\mathcal{G}$$

$$\delta\varphi(t, r, \theta, \phi) = \sum_{l,m} \frac{\Phi(r)Y_{lm}(\theta, \phi)}{r} e^{-i\omega t}$$

the perturbation equation is written as

$$\Phi''(r_*) - (V_{\text{eff}} - \omega^2)\Phi(r_*) = 0, \qquad dr_* = \frac{1}{\sqrt{AB}}dr,$$

$$V_{\text{eff}}(r) = \frac{l(l+1)A}{r^2} + \frac{1}{2r} \left(A'B + AB' \right) - f_{\varphi^*\varphi} A \mathcal{G},$$

The system becomes unstable if the following condition is met

$$\int\limits_{r_h}^{\infty} dr \frac{1}{\sqrt{AB}} V_{\text{eff}}(r) < 0.$$

Instability for Schwarzschild black hole

$$ds^{2} = -A(r)dt^{2} + \frac{1}{B(r)}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}(\theta)d\phi^{2}), \qquad A = B = 1 - \frac{2M}{r}$$
 (10)

Instability check yields

$$\alpha > \frac{5}{6} (2l(l+1) + 1)M^2 = \alpha_{Sch.}$$
 (11)

When $M=\frac{1}{2}$ and l=0,

$$\alpha_{\rm Sch.} = \frac{5}{24} \approx 0.2083$$
 (12)

"Schwarzschild black holes are unstable if $\alpha > \alpha_{\rm Sch.}$ "

◆□▶◆□▶◆ミ▶◆ミ▶ ミ かくぐ

Phase space

The regularity condition yields

$$1 - 96(\dot{f}_h)^2 > 0$$

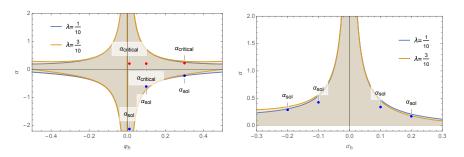


Figure: Phase space for symmetric phase (left) and symmetry-broken phase (right)

Miok Park (IBS-CTPU)

Phase space

The regularity condition yields

$$1 - 96(\dot{f}_h)^2 > 0$$

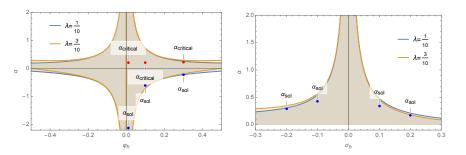
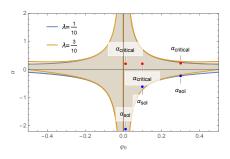


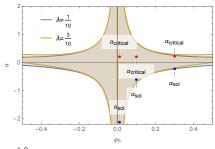
Figure: Phase space for symmetric phase (left) and symmetry-broken phase (right)

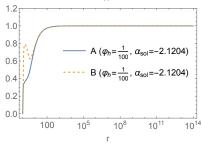
" $\alpha_{\rm critical} \approx \alpha_{\rm Sch.}$ "

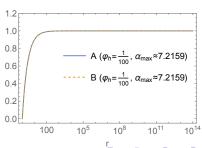
4 D > 4 B > 4 B > 4 B > 9 Q Q

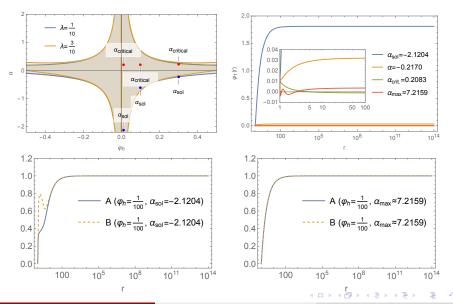
Miok Park (IBS-CTPU)

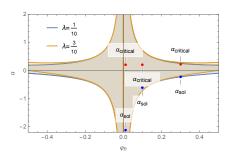


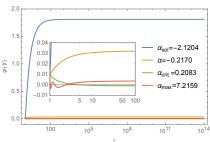


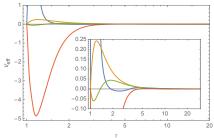


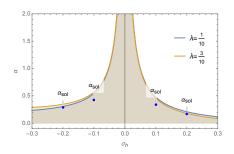


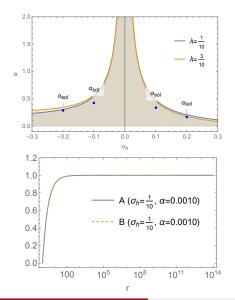


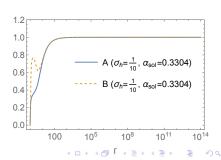


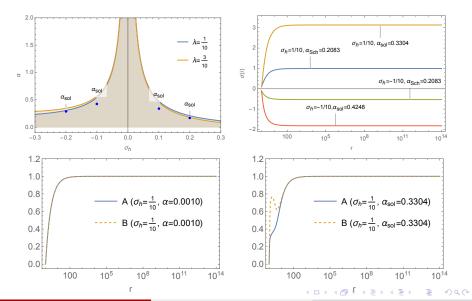


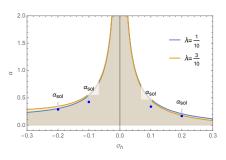


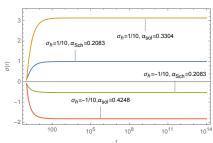


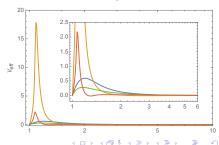












SSB in EsGB theory with local U(1)

This action is invariant under local U(1) symmetry : $\varphi \to \varphi \, e^{i\chi(r)}$

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa^2} R - \frac{1}{4} F^2 - D_\alpha \varphi^* D^\alpha \varphi + f(\varphi^*, \varphi) \mathcal{G} \right], \tag{13}$$

where F = dP and $D_{\alpha} = \nabla_{\alpha} - iqP_{\alpha}$.

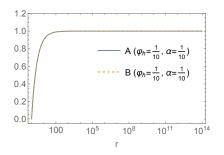
When q = 0,

$$\begin{split} A(r) &\sim 1 + \frac{A_1}{r} + \frac{P_1^2}{4\,r^2} - \frac{A_1\varphi_1^2}{12\,r^3} + \cdots \\ B(r) &\sim 1 + \frac{A_1}{r} + \frac{P_1^2 + 2\,\varphi_1^2}{4\,r^2} - \frac{A_1\varphi_1^2}{4\,r^3} + \cdots \\ P(r) &\sim P_\infty + \frac{P_1}{r} - \frac{P_1\,\varphi_1^2}{12\,r^3} + \cdots \\ \varphi(r) &\sim \varphi_\infty + \frac{\varphi_1}{r} - \frac{A_1\,\varphi_1}{2\,r^2} - \frac{\varphi_1\left(-4\,A_1^2 + P_1^2 + \varphi_1^2\right)}{12\,r^3} + \cdots \end{split}$$

- When $q \neq 0$, the asymptotic expansions of the gauge field and scalar fields yield $P_{\infty} = P_1 = 0$ or $\varphi_{\infty} = \varphi_1 = 0$.
- ullet This may imply that either the gauge field or the scalar field falls off faster than $1/r^n$ at infinity, or that there are no electrically-charged scalar hairy black hole

Hairy Black Holes in EsGB theory with local U(1)

Numerical solutions for q=0 case



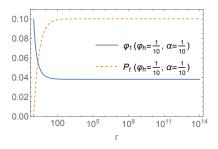


Figure: Hairy black hole solutions when q = 0

* We were not able to find hairy black hole solutions with charged scalar hairs ($q \neq 0$).

ullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.

- \bullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.
- We found that Schwarzschild black hole becomes unstable beyond $\alpha_{\rm Sch}=\frac{5}{24}\approx 0.283$ when $M=\frac{1}{2}$ and l=0 in our theory.

- \bullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.
- We found that Schwarzschild black hole becomes unstable beyond $\alpha_{\rm Sch}=\frac{5}{24}\approx 0.283$ when $M=\frac{1}{2}$ and l=0 in our theory.
- In the symmetric phase, when φ_h is very small, $\alpha_{\rm critical} \approx \alpha_{\rm Sch.}$. Thus, the Schwarzschild black hole might not finally evolve to hairy black holes.

- \bullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.
- We found that Schwarzschild black hole becomes unstable beyond $\alpha_{\rm Sch}=\frac{5}{24}\approx 0.283$ when $M=\frac{1}{2}$ and l=0 in our theory.
- In the symmetric phase, when φ_h is very small, $\alpha_{\rm critical} \approx \alpha_{\rm Sch.}$. Thus, the Schwarzschild black hole might not finally evolve to hairy black holes.
- In the symmetry-broken phase, the hairy black hole solutions are all stable against the scalar field perturbation.

- \bullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.
- We found that Schwarzschild black hole becomes unstable beyond $\alpha_{\rm Sch}=\frac{5}{24}\approx 0.283$ when $M=\frac{1}{2}$ and l=0 in our theory.
- In the symmetric phase, when φ_h is very small, $\alpha_{\rm critical} \approx \alpha_{\rm Sch.}$. Thus, the Schwarzschild black hole might not finally evolve to hairy black holes.
- In the symmetry-broken phase, the hairy black hole solutions are all stable against the scalar field perturbation.
- Goldstone bosons are decoupled from other equations and only trivial solutions are accepted.

- \bullet We considered the Einstein-Scalar-Gauss-Bonnet (ESGB) theory with U(1) symmetry and showed that SSB can lead to the formation or evolution of hairy black holes from non-hairy ones.
- We found that Schwarzschild black hole becomes unstable beyond $\alpha_{\rm Sch}=\frac{5}{24}\approx 0.283$ when $M=\frac{1}{2}$ and l=0 in our theory.
- In the symmetric phase, when φ_h is very small, $\alpha_{\rm critical} \approx \alpha_{\rm Sch.}$. Thus, the Schwarzschild black hole might not finally evolve to hairy black holes.
- In the symmetry-broken phase, the hairy black hole solutions are all stable against the scalar field perturbation.
- Goldstone bosons are decoupled from other equations and only trivial solutions are accepted.
- Thus, we expect that the Schwarzschild black holes in the unstable range of α ($\alpha > \alpha_{\rm Sch.}$) would evolve into the hairy black holes in the symmetry-broken phase.
- Spontaneous symmetry breaking associated with local U(1) cannot be realized in this theory.

Thank you!

