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M-theory

• SU(N) regularized model with discrete supersymmetric spectra. 
String configurations are not instabilities.
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charges.

• It has been formulated in: ℝ1,8 × 𝑇2 ,     ℝ1,3 × 𝑇6 × 𝑆1 and  ℝ1,3 × 𝐺2
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𝑞 𝕎
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Λ∗𝕎 𝜏 𝜏 +

ℤ

𝑞

The theory is formulated on the parabolic coinvariants! (Equivalence class) 

The associated (p,q)-strings on a circle, which we called parabolic (p,q)-strings or just 
q-strings, were conjectured by C. Hull (Hull, ‘98) as compactification of F-theory on a 

twisted 3-torus. Their low energy is given by type IIB parabolic gauged supergravity
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Summary
M2-brane 
with central 
charges.

M2-brane 
with fluxes.

 (I and II)

Type IIA “D2-branes” on
ℝ1,7 × 𝑇2 with particular RR 

and NSNS fluxes and 
nontrivial gauge symmetries

Type IIB (p,q)-strings on
ℝ1,8 × 𝑆1 with symmetry

group ⊆ 𝑆𝐿(2, ℤ)

Maximal Sugra
9D

Type IIB gauged
Sugra 9D
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