Reducing differential equations for GKZ systems

Arno Hoefnagels,

In collaboration with Thomas Grimm and Guilherme Pimentel

String Phenomenology 2023, Daejeon

Introduction

Hypergeometric integrals

• Want to solve integrals of the type:

 $I(z) = \int_{\gamma} d^n x \; \frac{x_1^{\alpha_1 - 1} \cdots x_n^{\alpha_n - 1}}{f_1(x, z)^{\beta_1} \cdots f_k(x, z)^{\beta_k}}$

• For f_k polynomials in x_i with coefficients z_j

Hypergeometric integrals

• Want to solve integrals of the type:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

- For f_k polynomials in x_i with coefficients z_j
- Extremely general
 - CY periods
 - Feynman integrals
 - Cosmological correlators
 - Many more

Hypergeometric integrals

• Want to solve integrals of the type:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

- For f_k polynomials in x_i with coefficients z_j
- Extremely general
 - CY periods
 - Feynman integrals
 - Cosmological correlators
 - Many more
- (Almost always) difficult to solve directly

Recasting as differential equations

- Solution:
 - Find differential equations in z_j satisfied by I
- Many approaches:
 - Picard-Fuchs equations when α_i and β_i are integers
 - Integration by parts identities
 - Gelfand-Kapranov-Zelevinsky (GKZ) systems

[Gelfand, Zelevinsky, Kapranov, '89] [Saito, Sturmfelds, Takayama, '13]

Useful formulas:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

[Weinzierl, '22]

Recasting as differential equations

- Solution:
 - Find differential equations in z_j satisfied by I
- Many approaches:
 - Picard-Fuchs equations when α_i and β_i are integers
 - Integration by parts identities
 - Gelfand-Kapranov-Zelevinsky (GKZ) systems

[Gelfand, Zelevinsky, Kapranov, '89] [Saito, Sturmfelds, Takayama, '13]

Useful formulas:

$$I(z) = \int_{\gamma} d^n x \; \frac{x_1^{\alpha_1 - 1} \cdots x_n^{\alpha_n - 1}}{f_1(x, z)^{\beta_1} \cdots f_k(x, z)^{\beta_k}}$$

Reducing differential equations for GKZ systems, String Phenomenology 2023 [Weinzierl, '22]

4

What is a GKZ system (schematically)?

- Set of differential equations in variables z_j
- Dependent on parameters α_i and β_i
- Solving this system and imposing boundary conditions gives us I

$$f(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

Useful formulas:

Why use GKZ systems?

- Easily obtainable solutions (for "sufficiently generic" α_i and β_i)
- Allows systematic study of classes of integrals
- Beautiful geometric properties
- Can use powerful machinery of \mathcal{D} -modules

Useful formulas:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

Reducing differential equations for GKZ systems, String Phenomenology 2023

6

GKZ systems

- Start with easy example: $I(z) = \int_{\gamma} dx_1 dx_2 \ \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$
- Obtain differential equations by:

- Start with easy example: $I(z) = \int_{\gamma} dx_1 dx_2 \ \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$
- Obtain differential equations by:
 - 1) Turn exponents of polynomial into vectors: $z_1x^2y^0 + z_2x^1y^1 + z_3x^0y^0 \longrightarrow a_1 = (2,0)^T, a_2 = (1,1)^T, a_3 = (0,0)^T$

- Start with easy example: $I(z) = \int_{\gamma} dx_1 dx_2 \ \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$
- Obtain differential equations by:
 - 1) Turn exponents of polynomial into vectors: $z_1x^2y^0 + z_2x^1y^1 + z_3x^0y^0 \longrightarrow a_1 = (2,0)^T, a_2 = (1,1)^T, a_3 = (0,0)^T$
 - 2) Turn vectors into (homogenized) matrix

$$\mathcal{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- Start with easy example: $I(z) = \int_{\gamma} dx_1 dx_2 \ \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$
- Obtain differential equations by:
 - 1) Turn exponents of polynomial into vectors: $z_1x^2y^0 + z_2x^1y^1 + z_3x^0y^0 \longrightarrow a_1 = (2,0)^T, a_2 = (1,1)^T, a_3 = (0,0)^T$
 - 2) Turn vectors into (homogenized) matrix

$$\mathcal{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

3) A, α_i and β_i determine the differential equations completely!

- Differential equation has two parts:
 - 1) "toric" equations:

 $\partial_1^{u_1} \cdots \partial_m^{u_m} - \partial_1^{v_1} \cdots \partial_m^{v_m}$ with $u_i, v_i \in \mathbb{N}$ satisfying $\mathcal{A}u = \mathcal{A}v$ Trivial in this case since $\operatorname{Ker}(\mathcal{A}) = 0$

> Useful formulas: $I(z) = \int_{\gamma} dx_1 dx_2 \, \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$ $\mathcal{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

- Differential equation has two parts:
 - 1) "toric" equations:

 $\partial_1^{u_1} \cdots \partial_m^{u_m} - \partial_1^{v_1} \cdots \partial_m^{v_m}$ with $u_i, v_i \in \mathbb{N}$ satisfying $\mathcal{A}u = \mathcal{A}v$ Trivial in this case since $\operatorname{Ker}(\mathcal{A}) = 0$

2) "Euler" equations:

$$\mathcal{A}\begin{pmatrix}z_1\partial_1\\z_2\partial_2\\z_3\partial_3\end{pmatrix} + \begin{pmatrix}\beta_1\\\alpha_1\\\alpha_2\end{pmatrix} = \begin{pmatrix}z_1\partial_1 + z_2\partial_2 + z_3\partial_3 + \beta_1\\2z_1\partial_1 + z_2\partial_2 + \alpha_1\\z_2\partial_2 + \alpha_2\end{pmatrix}$$

Useful formulas:

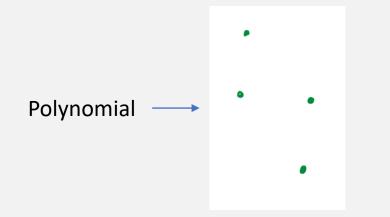
$$I(z) = \int_{\gamma} dx_1 dx_2 \ \frac{x_1^{\alpha_1 - 1} x_2^{\alpha_2 - 1}}{(z_1 x^2 + z_2 x y + z_3)^{\beta_1}}$$
$$\mathcal{A} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:

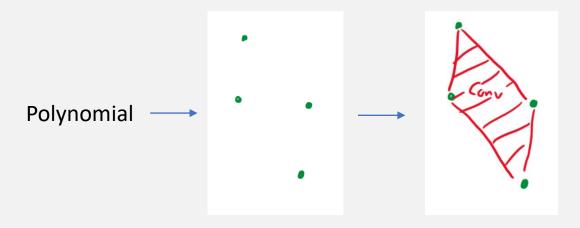
- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:

Polynomial

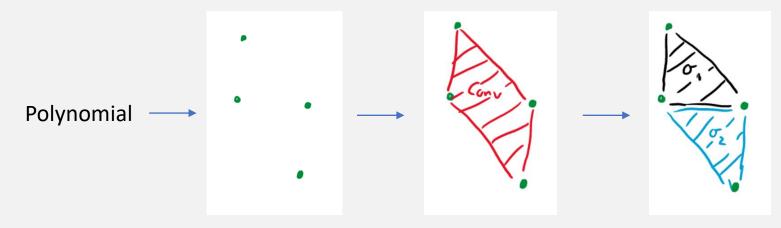
- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:



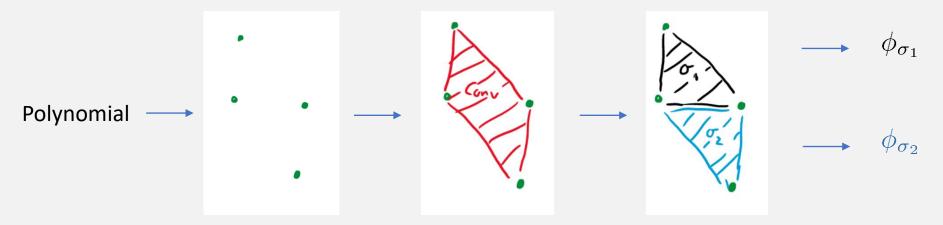
- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:



- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:



- Easily obtainable basis of solutions
 - For "sufficiently generic" α_i and β_i
- Obtained in geometric way:



Comments

- Extremely general framework
- Subtleties when $\alpha_i, \beta_i \in \mathbb{Z}$
- Solutions might be difficult to use!
 - Reducing the system: wip with Thomas Grimm and Guilherme Pimentel
- \bullet Mathematicians use language of $\mathcal D$ -modules

Reducing differential equations for GKZ systems, String Phenomenology 2023 Useful formulas:

$$I(z) = \int_{\gamma} d^n x \; \frac{x_1^{\alpha_1 - 1} \cdots x_n^{\alpha_n - 1}}{f_1(x, z)^{\beta_1} \cdots f_k(x, z)^{\beta_k}}$$

Reductions of differential systems

Why reduce?

- Solutions can involve many summations
- In examples of interest many simplifications seem to happen
- Find when GKZ system "simplifies"

Why reduce?

- Solutions can involve many summations
- In examples of interest many simplifications seem to happen
- Find when GKZ system "simplifies"
- Precisely:
 - GKZ system = D-modules
 - Subsystem = Sub-module
 - So study reducability!

Reducability

- Exist theorems when GKZ systems are irreducible [Schulze, Walther '10]
- Idea: invert these to find subsystems

Useful formulas:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

Reducability

- Exist theorems when GKZ systems are irreducible [Schulze, Walther '10]
- Idea: invert these to find subsystems
- Key fact: reducability only depends on α_i and β_i

Useful formulas:

$$I(z) = \int_{\gamma} d^{n}x \; \frac{x_{1}^{\alpha_{1}-1} \cdots x_{n}^{\alpha_{n}-1}}{f_{1}(x,z)^{\beta_{1}} \cdots f_{k}(x,z)^{\beta_{k}}}$$

Algorithm

- Schematic overview:
 - 1) Identify subsystems using α_i and β_i
 - 2) Solve enough to obtain basis
 - 3) Insert subsystems into original system
- Note: last part in practice most difficult

Useful formulas:

$$I(z) = \int_{\gamma} d^n x \; \frac{x_1^{\alpha_1 - 1} \cdots x_n^{\alpha_n - 1}}{f_1(x, z)^{\beta_1} \cdots f_k(x, z)^{\beta_k}}$$

Conclusion

Conclusion

- GKZ systems gives powerful tools for solving integrals
 - Beautiful geometrical interpretation
 - Easily obtainable basis
- At the cost of increased complexity
 - Can be mitigated using reductions

Conclusion

- GKZ systems gives powerful tools for solving integrals
 - Beautiful geometrical interpretation
 - Easily obtainable basis
- At the cost of increased complexity
 - Can be mitigated using reductions

Thanks for listening!

