Challenges and new Perspectives for dS vacua:

α^{\prime} corrections to KPV

Simon Schreyer

Based on 2208.02826 with Arthur Hebecker and Gerben Venken and 2212.07437 with Gerben Venken

String Pheno July 62023

Motivation

Accelerated expanding universes from controlled dS vacua in string theory?
\Rightarrow Important player: anti-D3-brane uplift:

- $\overline{D 3}$ at tip of KS throat to avoid runaway
- M units of F_{3} (K units of H_{3}) flux on A-cycle (B-cycle)

Motivation

Accelerated expanding universes from controlled dS vacua in string theory?
\Rightarrow Important player: anti-D3-brane uplift:

- $\overline{D 3}$ at tip of KS throat to avoid runaway
- M units of $F_{3}\left(K\right.$ units of $\left.H_{3}\right)$ flux on A-cycle (B-cycle)
- At tip: A-cycle topologically S^{3}
- Small positive vacuum energy:

$$
\begin{aligned}
& \left|V_{\text {Ads }, \text { Lvs }}\right| \sim \mathcal{V}^{-3} \stackrel{!}{\approx} V_{\text {up }} \sim \frac{\mathrm{e}^{-N / g s M^{2}}}{\mathcal{V}^{4 / 3}} \\
& \Rightarrow N M>g_{s} M^{2}
\end{aligned}
$$

Motivation (continued)

Problem: Classical decay channel to SUSY minimum [kevoon

- $p \overline{D 3}$ s puff up into fluxed NS5 wrapping S^{2} inside S^{3}
- NS5 can annihilate with flux to form SUSY minimum
- $R_{S^{3}} \sim \sqrt{g_{s} M \alpha^{\prime}}$

Figure: Normalized NS5-brane potential for different p / M.

Motivation (continued)

Problem: Classical decay channel to SUSY minimum [kevoon

- $p \overline{D 3}$ s puff up into fluxed NS5 wrapping S^{2} inside S^{3}
- NS5 can annihilate with flux to form SUSY minimum
- $R_{S^{3}} \sim \sqrt{g_{s} M \alpha^{\prime}}$
- $p / M<0.08$ for metastability
- KPV performed leading order in α^{\prime} analysis

Figure: Normalized NS5-brane potential for different p / M.

Why consider $\alpha^{\prime 2}$ corrections on NS5?

- Metastability per se $\Rightarrow \alpha^{\prime}$ corrected version of KPV bound $p / M<0.08$
- Lower bound on $g_{s} M^{2}$ important for LVS pheno:

Why consider $\alpha^{\prime 2}$ corrections on NS5?

- Metastability per se $\Rightarrow \alpha^{\prime}$ corrected version of KPV bound $p / M<0.08$
- Lower bound on $g_{s} M^{2}$ important for LVS pheno:
- Remember: require $N \gg g_{s} M^{2}$ to uplift to dS
- Problem with tadpole cancellation: Negative contribution to tadpole limited

Why consider $\alpha^{\prime 2}$ corrections on NS5?

- Metastability per se $\Rightarrow \alpha^{\prime}$ corrected version of KPV bound $p / M<0.08$
- Lower bound on $g_{s} M^{2}$ important for LVS pheno:
- Remember: require $N \gg g_{s} M^{2}$ to uplift to dS
- Problem with tadpole cancellation: Negative contribution to tadpole limited
- KPV: $p / M<0.08, g_{s} M>1$ (control α^{\prime} corrections) and $p=1 \Rightarrow$ $g_{s} M^{2}>12$
- Problem: R^{2} curvature corrections suppressed by $R_{S^{3}}^{4} \sim\left(g_{s} M\right)^{2}$ $\Rightarrow \alpha^{\prime}$ corrections important in pheno relevant, smallish $g_{s} M^{2}$ regime
\Rightarrow Quantify control over α^{\prime} corrections by including them into KPV analysis
- Many (not all!) $\alpha^{\prime 2}$ correction to $\mathrm{D} p$-branes known [Bachas, Bini, Green 99, Garousit Jalali, Kaimit Babaei veni, Mir, Mashhadi iog22, Robbins, Wang ${ }^{\prime} 44$, we dualized them to corrections on NS5

$\overline{\alpha^{\prime 2}}$ corrections on NS5-branes

- Many (not all!) $\alpha^{\prime 2}$ correction to $\mathrm{D} p$-branes known EBachas, Bain, Green 99, Garousi + Jalali, Kaimit Babaei veni, Mir, Mashihadi 19.22 , Robobins, Wang ${ }^{9} 44$, we dualized them to corrections on NS5
- Schematically, they are of the form

$$
\begin{gathered}
S_{\mathrm{DBI}, \mathrm{NS} 5} \supset \frac{\mu_{5}}{g_{s}^{2}} \alpha^{\prime 2} \int_{\mathcal{M}_{6}} \mathrm{~d}^{6} x \sqrt{-\left(g+2 \pi \alpha^{\prime} g_{s} \mathcal{F}_{2}\right)}\left[\left(-g_{s} F_{3}\right)^{4}+\left(-g_{s} F_{3}\right)^{2} R\right. \\
\left.+\Omega^{4}\left(2 \pi \alpha^{\prime} g_{s} \mathcal{F}_{2}\right)^{2}+\left(2 \pi \alpha^{\prime} g_{s} \mathcal{F}_{2}\right) \Omega^{2} \nabla\left(-g_{s} F_{3}\right)\right] \\
S_{\mathrm{CS}, \mathrm{NS} 5} \supset \frac{\mu_{5}}{g_{s}^{2}} \alpha^{\prime 2} \int_{\mathcal{M}_{6}} \mathrm{~d}^{6} x\left[-\epsilon_{(6)}\left(g_{s} \mathcal{F}_{2}\right) R \nabla\left(g_{s} \tilde{F}_{5}\right)\right. \\
\\
\left.+\epsilon_{(6)}\left(g_{s} \mathcal{F}_{2}\right) \nabla\left(-g_{s} F_{3}\right) \nabla\left(g_{s}^{2} H_{7}\right)\right]
\end{gathered}
$$

$\overline{\alpha^{\prime 2}}$ corrected KPV potential

$$
\begin{aligned}
V= & \frac{4 \pi \mu_{5} M}{g_{s}} \sqrt{b_{0}^{4} \sin ^{4}(\psi)+\left(p \frac{\pi}{M}-\psi+\frac{1}{2} \sin (2 \psi)\right)^{2}} \times\left[1+\frac{1}{\left(g_{s} M\right)^{2}}\left(c_{3}-c_{1}\right.\right. \\
& +\left(c_{4}-2 c_{2}\right) \cot ^{2} \psi-c_{2} \cot ^{4} \psi+\frac{c_{5} \cot ^{4} \psi}{\sin ^{4} \psi}\left(\frac{\pi p}{M}-\left(\psi-\frac{\sin (2 \psi)}{2}\right)\right)^{2} \\
& \left.\left.-\frac{c_{6} \cot ^{3} \psi}{\sin ^{2} \psi}\left(\frac{\pi p}{M}-\left(\psi-\frac{\sin (2 \psi)}{2}\right)\right)\right)\right] \\
& +\left[\frac{4 \pi^{2} p \mu_{5}}{g_{s}}-\frac{4 \pi \mu_{5} M}{g_{s}}\left(\psi-\frac{\sin (2 \psi)}{2}\right)\right]\left(1+\frac{c_{7}}{\left(g_{s} M\right)^{2}}+\frac{c_{8} \cot \psi}{\left(g_{s} M\right)^{2} \sin \psi}\right)
\end{aligned}
$$

- c_{1}, \cdots, c_{8} numerical constants, explicitly calculated
- Potential enjoys expansion in $g_{s} M$ and p / M

$\overline{\text { Plot for fixed } g_{s}} M^{2}=20$

Figure: $\alpha^{\prime 2}$ corrected KPV potential for $g_{s} M=20$.

Figure: Tree level KPV potential.

- Divergences at $\psi=0, \pi$ should be cured by summing over all α^{\prime} corrections

Scan $\left(g_{s} M, p / M\right)$ parameter space

Scan $\left(g_{s} M, p / M\right)$ parameter space

- Minimal bound on $g_{s} M$:
$g_{s} M>3.6, p=1 \Rightarrow g_{s} M^{2}>144$ (compare to $g_{s} M^{2}>12$ from KPV!) \Rightarrow need much more flux in throat for consistent uplift
- Minimal negative contribution in LVS: $\left|Q_{3, \text { min }}\right| \sim \mathcal{O}\left(10^{3}\right)$ using PTC of ${ }_{\text {Gaoo, Hebecter }}$

Schreyer, Venken '22]

- Very constraining: currently highest constructed $\left|Q_{3, \min }\right|=\mathcal{O}(3000)$ [crini, Quevedo,

Uplifting without exponentially large warping

- Observation: Tuning α^{\prime} corrections by $g_{s} M, p / M$ tunes value of potential at metastable minimum!

Uplifting without exponentially large warping

- Observation: Tuning α^{\prime} corrections by $g_{s} M, p / M$ tunes value of potential at metastable minimum!
- No need to warp down $T_{\mathrm{D} 3}$, as itself tunable to exponentially small value!
- No large flux and large $\left|Q_{3, \text { min }}\right|$ needed, e.g. $N=40$
- Not only applicable in LVS

Uplifting without exponentially large warping

- Observation: Tuning α^{\prime} corrections by $g_{s} M, p / M$ tunes value of potential at metastable minimum!
- No need to warp down $T_{\mathrm{D} 3}$, as itself tunable to exponentially small value!
- No large flux and large $\left|Q_{3, \text { min }}\right|$ needed, e.g. $N=40$
- Not only applicable in LVS
- Problem: works only at boundary of control as $R_{\text {NS5 }}^{2}\left(\psi_{\text {min }}\right) \approx 1$

Summary

- α^{\prime} corrections worsen the control issue in LVS with standard $\overline{D 3}$-uplift by order of magnitude \Rightarrow need models with tadpole of $\mathcal{O}\left(10^{3}\right)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control

Summary

- α^{\prime} corrections worsen the control issue in LVS with standard $\overline{D 3}$-uplift by order of magnitude \Rightarrow need models with tadpole of $\mathcal{O}\left(10^{3}\right)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control
- Need to improve understanding at boundary of control (small $g_{s} M$ regime) by studying setup from different perspectives:
- Calculate higher order α^{\prime} effects
- Nonabelian $\overline{D 3}$-stack and holographic perspective (reliable when our NS5-brane perspective breaks down)

Summary

- α^{\prime} corrections worsen the control issue in LVS with standard $\overline{D 3}$-uplift by order of magnitude \Rightarrow need models with tadpole of $\mathcal{O}\left(10^{3}\right)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control
- Need to improve understanding at boundary of control (small $g_{s} M$ regime) by studying setup from different perspectives:
- Calculate higher order α^{\prime} effects
- Nonabelian $\overline{D 3}$-stack and holographic perspective (reliable when our NS5-brane perspective breaks down)

Thank you!

