Challenges and new Perspectives for dS vacua:

 α' corrections to KPV

Simon Schreyer

Based on 2208.02826 with Arthur Hebecker and Gerben Venken and 2212.07437 with Gerben Venken

String Pheno July 6 2023

Motivation

Accelerated expanding universes from controlled dS vacua in string theory?

 \Rightarrow Important player: anti-D3-brane uplift:

- $\overline{D3}$ at tip of KS throat to avoid runaway
- *M* units of F_3 (*K* units of H_3) flux on A-cycle (B-cycle)

Motivation

Accelerated expanding universes from controlled dS vacua in string theory?

 \Rightarrow Important player: anti-D3-brane uplift:

- $\overline{D3}$ at tip of KS throat to avoid runaway
- *M* units of F_3 (*K* units of H_3) flux on A-cycle (B-cycle)
- At tip: A-cycle topologically S³
- Small positive vacuum energy:

$$\begin{split} |V_{\text{AdS,LVS}}| &\sim \mathcal{V}^{-3} \stackrel{!}{\approx} V_{\text{up}} \sim \frac{\mathrm{e}^{-N/g_{\text{s}}M^2}}{\mathcal{V}^{4/3}} \\ \Rightarrow N = \mathcal{K}M \gg g_{\text{s}}M^2 \end{split}$$

Motivation (continued)

Problem: Classical decay channel to SUSY minimum [KPV 101]

- $p \overline{D3}$ s puff up into fluxed NS5 wrapping S^2 inside S^3
- NS5 can annihilate with flux to form SUSY minimum
- $R_{S^3} \sim \sqrt{g_s M \alpha'}$

Figure: Normalized NS5-brane potential for different p/M.

Motivation (continued)

Problem: Classical decay channel to SUSY minimum [KPV 101]

- $p \overline{D3}$ s puff up into fluxed NS5 wrapping S^2 inside S^3
- NS5 can annihilate with flux to form SUSY minimum
- $R_{S^3} \sim \sqrt{g_s M \alpha'}$
- p/M < 0.08 for metastability
- KPV performed leading order in α^\prime analysis

Figure: Normalized NS5-brane potential for different p/M.

Why consider α'^2 corrections on NS5?

- Metastability per se $\Rightarrow \alpha'$ corrected version of KPV bound p/M < 0.08
- Lower bound on $g_s M^2$ important for LVS pheno:

Why consider α'^2 corrections on NS5?

- Metastability per se $\Rightarrow \alpha'$ corrected version of KPV bound p/M < 0.08
- Lower bound on $g_s M^2$ important for LVS pheno:
 - Remember: require $N \gg g_s M^2$ to uplift to dS
 - · Problem with tadpole cancellation: Negative contribution to tadpole limited

Why consider α'^2 corrections on NS5?

- Metastability per se $\Rightarrow \alpha'$ corrected version of KPV bound p/M < 0.08
- Lower bound on $g_s M^2$ important for LVS pheno:
 - Remember: require $N \gg g_s M^2$ to uplift to dS
 - Problem with tadpole cancellation: Negative contribution to tadpole limited
- KPV: p/M < 0.08, $g_sM > 1$ (control α' corrections) and $p=1 \Rightarrow g_sM^2 > 12$
- Problem: R^2 curvature corrections suppressed by $R_{S^3}^4 \sim (g_s M)^2$ $\Rightarrow \alpha'$ corrections important in pheno relevant, smallish $g_s M^2$ regime
- \Rightarrow Quantify control over α' corrections by including them into KPV analysis

α'^2 corrections on NS5-branes $_{\rm [Schreyer, Venken 22]}$

• Many (not all!) α'^2 correction to D*p*-branes known (Bachas, Bain, Green '99, Garousi + Jalali, Karimi, Babaei Velni, Mir, Mashhadi '09-22, Robbins, Wang '14], we dualized them to corrections on NS5

 α'^2 corrections on NS5-branes [Schreyer, Venken '22]

- Many (not all!) α'^2 correction to D*p*-branes known [Bachas, Bain, Green '99, Garousi + Jalali, Karimi, Babaei Velni, Mir, Mashhadi '09-22, Robbins, Wang '14], we dualized them to corrections on NS5
- Schematically, they are of the form

$$\begin{split} \mathcal{S}_{\text{DBI,NS5}} &\supset \frac{\mu_5}{g_s^2} \alpha'^2 \int_{\mathcal{M}_6} \mathrm{d}^6 x \sqrt{-(g+2\pi\alpha' g_s \mathcal{F}_2)} \Bigg[(-g_s \mathcal{F}_3)^4 + (-g_s \mathcal{F}_3)^2 \mathcal{R} \\ &+ \Omega^4 (2\pi\alpha' g_s \mathcal{F}_2)^2 + (2\pi\alpha' g_s \mathcal{F}_2) \Omega^2 \nabla (-g_s \mathcal{F}_3) \Bigg] \,, \end{split}$$

$$\begin{split} \mathcal{S}_{\mathrm{CS,NS5}} &\supset \frac{\mu_5}{g_s^2} \alpha'^2 \int_{\mathcal{M}_6} \mathrm{d}^6 x \left[-\epsilon_{(6)}(g_s \mathcal{F}_2) R \nabla(g_s \tilde{\mathcal{F}}_5) \right. \\ &\left. + \epsilon_{(6)}(g_s \mathcal{F}_2) \nabla(-g_s \mathcal{F}_3) \nabla(g_s^2 \mathcal{H}_7) \right], \end{split}$$

α'^2 corrected KPV potential $_{\rm [Schreyer, Venken '22]}$

$$\begin{split} V &= \frac{4\pi\mu_5 M}{g_s} \sqrt{b_0^4 \sin^4(\psi) + \left(p\frac{\pi}{M} - \psi + \frac{1}{2}\sin(2\psi)\right)^2} \times \left[1 + \frac{1}{(g_s M)^2} \left(c_3 - c_1 + (c_4 - 2c_2)\cot^2\psi - c_2\cot^4\psi + \frac{c_5\cot^4\psi}{\sin^4\psi} \left(\frac{\pi p}{M} - \left(\psi - \frac{\sin(2\psi)}{2}\right)\right)^2\right] \\ &- \frac{c_6\cot^3\psi}{\sin^2\psi} \left(\frac{\pi p}{M} - \left(\psi - \frac{\sin(2\psi)}{2}\right)\right) \end{bmatrix} \\ &+ \left[\frac{4\pi^2 p\mu_5}{g_s} - \frac{4\pi\mu_5 M}{g_s} \left(\psi - \frac{\sin(2\psi)}{2}\right)\right] \left(1 + \frac{c_7}{(g_s M)^2} + \frac{c_8\cot\psi}{(g_s M)^2\sin\psi}\right) \end{split}$$

- c_1, \cdots, c_8 numerical constants, explicitly calculated
- Potential enjoys expansion in $g_s M$ and p/M

Plot for fixed $g_s M^2 = 20$

Figure: Tree level KPV potential.

Figure: α'^2 corrected KPV potential for $g_s M = 20$.

- Divergences at $\psi = 0, \pi$ should be cured by summing over all α' corrections

Scan ($g_s M$, p/M) parameter space

Scan $(g_s M, p/M)$ parameter space

- Minimal bound on $g_s M$: $g_s M > 3.6, p = 1 \Rightarrow g_s M^2 > 144$ (compare to $g_s M^2 > 12$ from KPV!) \Rightarrow need much more flux in throat for consistent uplift
- Minimal negative contribution in LVS: $|Q_{3,\rm min}|\sim \mathcal{O}(10^3)~{\rm using~PTC~of}~_{\rm [Gao,~Hebecker,}$

Schreyer, Venken '22]

- Very constraining: currently highest constructed $|Q_{3,\min}|=\mathcal{O}(3000)$ [Crinō, Quevedo,

Schachner, Valandro '22]

Uplifting without exponentially large warping

 Observation: Tuning α' corrections by g_s M, p/M tunes value of potential at metastable minimum!

Uplifting without exponentially large warping

- Observation: Tuning α' corrections by $g_s M$, p/M tunes value of potential at metastable minimum!
- No need to warp down T_{D3}, as itself tunable to exponentially small value!
- No large flux and large $|Q_{3,\min}|$ needed, e.g. N = 40
- Not only applicable in LVS

Uplifting without exponentially large warping

- Observation: Tuning α' corrections by $g_s M$, p/M tunes value of potential at metastable minimum!
- No need to warp down T_{D3}, as itself tunable to exponentially small value!
- No large flux and large $|Q_{3,\min}|$ needed, e.g. N = 40
- Not only applicable in LVS
- Problem: works only at boundary of control as $R^2_{\rm NS5}(\psi_{\rm min}) pprox 1$

- α' corrections worsen the control issue in LVS with standard $\overline{D3}$ -uplift by order of magnitude
 - \Rightarrow need models with tadpole of $\mathcal{O}(10^3)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control

- α' corrections worsen the control issue in LVS with standard $\overline{D3}$ -uplift by order of magnitude
 - \Rightarrow need models with tadpole of $\mathcal{O}(10^3)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control
- Need to improve understanding at boundary of control (small *g_sM* regime) by studying setup from different perspectives:
 - Calculate higher order α' effects
 - Nonabelian D3-stack and holographic perspective (reliable when our NS5-brane perspective breaks down)

- α' corrections worsen the control issue in LVS with standard $\overline{D3}$ -uplift by order of magnitude
 - \Rightarrow need models with tadpole of $\mathcal{O}(10^3)$ which require much more work to prove existence of controlled dS vacua
- Proposed new uplifting mechanism circumventing constraints, but works at very boundary of control
- Need to improve understanding at boundary of control (small *g_sM* regime) by studying setup from different perspectives:
 - Calculate higher order α' effects
 - Nonabelian D3-stack and holographic perspective (reliable when our NS5-brane perspective breaks down)

Thank you!

