PERTURBATIVE DE SITTER AND BRANE INFLATION

(Based on hep-th: 2202.05344 and hep-th: 23XX.XXXX)

MARIO RAMOS HAMUD

Department of Applied Mathematics and Theoretical Physics University of Cambridge

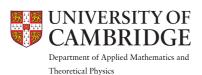
String Phenomenology 2023 IBS, Daejeon, South Korea THURSDAY, 06 JULY 2023

COLLABORATION

Jano Jano Lalan

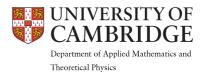
M. Cicoli

C. Hugues

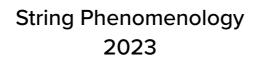


F. Marino

F. Quevedo



G. Villa



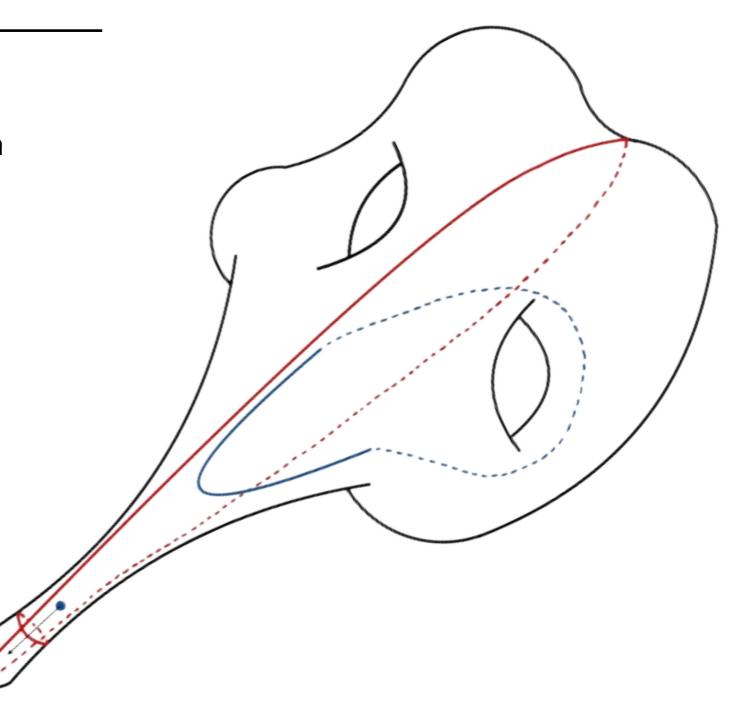
OUTLINE

• RG-Induced modulus stabilisation

• Brane-anti-brane inflation

• EFT analysis

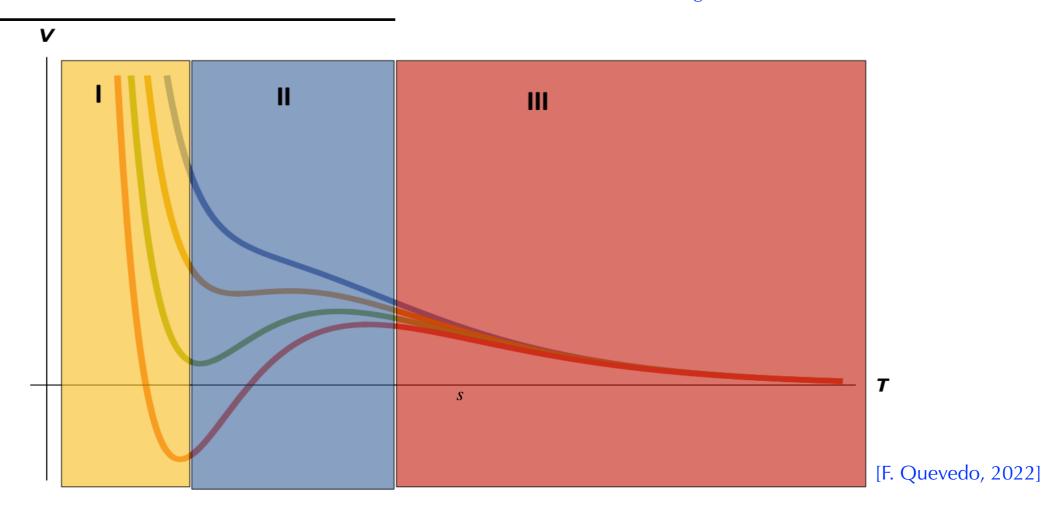
• Conclusions



RG-INDUCED MODULUS STABILISATION

DINE-SEIBERG PROBLEM

[M. Dine. N. Seiberg, 1985]



- Region I: out of the domain of parametric control of the EFT (small \mathcal{V} /strong g_s).
- Region II: requires extra ingredients in the compactification to get a minimum.
- Region III: runaway region which is the only one fully trustable in the EFT.

If the scalar potential has a minimum, it is generically at $s \sim \tau \sim \mathcal{O}(1)$. (Two accidental approximate scale symmetries with s and τ as pseudo Goldstone bosons)

RG-INDUCED MODULI STABILISATIO

[C. Burguess and F. Quevedo 2022]

Consider IIB string theory compactified in a CY three-fold with the complex structure moduli stabilised as in GKP with $W = \omega_0$ independent of $T = \frac{1}{2}(\tau + i\alpha)$.

Two accidental symmetries broken by α' and loop corrections to the EFT action:

- α' expansion becomes an expansion in inverse powers of $\mathscr{V} := \tau^{2/3}$.
- String loop corrections become an expansion in powers of $\text{Re}(\mathcal{S})^{-1} = e^{\phi}$.

In the regime where $\tau \gg 1$ the following expansion is valid:

$$e^{-K/3} = \tau - k + \frac{h}{\tau} + \dots \Rightarrow K(T, \overline{T}) = -3 \ln \mathcal{P}, \text{ with } \mathcal{P} = \tau \left[1 - \frac{k}{\tau} + \frac{h}{\tau^{3/2}} + \dots \right]$$

and where
$$k = k(\ln \tau)$$
 and $h = h(\ln \tau)$, more explicitly, for $\alpha_g \sim \epsilon \ll 1$: [Conlon and Palti., 2009] [Grimm et al., 2015] $\Rightarrow k \simeq k_0 + k_1 \alpha_g + \frac{k_2}{2} \alpha_g^2 + \dots$ and $\tau \frac{d\alpha_g}{d\tau} = \beta(\alpha_g) = b_1 \alpha_g^2 + b_2 \alpha_g^3 + \dots$

$$\therefore \quad \alpha_g(\tau) = \frac{\alpha_{g0}}{1 - b_1 \alpha_{g0} \ln \tau} \quad \text{for some integration constant } \alpha_{g0} = \alpha_g(\tau = 1).$$

RG-INDUCED MODULI STABILISATION

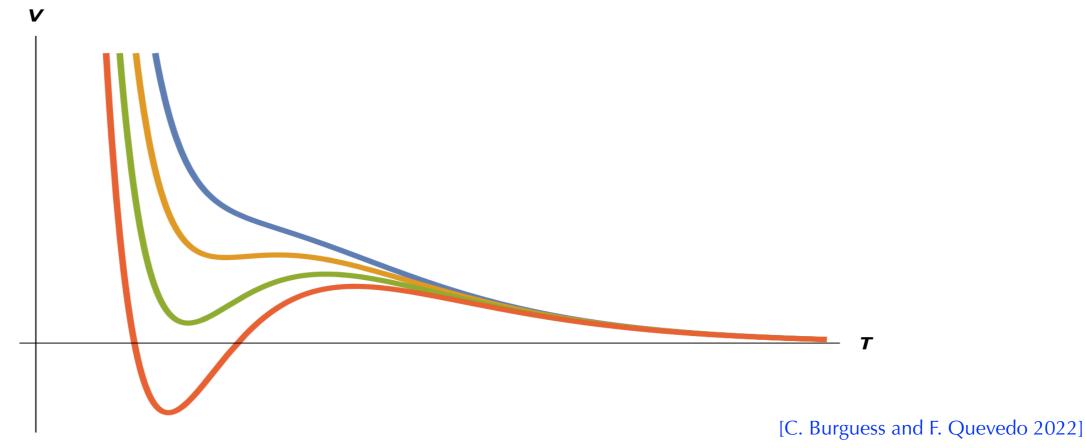
The corresponding dominant term in the scalar potential is given by

$$V \simeq -\frac{3(k'-k'')}{\tau^4} \simeq \frac{U(\ln \tau)}{\tau^4}$$
 where $U \simeq U_1 \alpha_g^2 - U_2 \alpha_g^3 + U_3 \alpha_g^4 + \dots$ $\Rightarrow \quad \alpha_{g0} \ln(\tau_0) \simeq \mathcal{O}(1).$

Dine-Seiberg argument implies a minimum at exponentially large volume:

$$\tau_0 \sim e^{\frac{1}{\epsilon}} \gg 1.$$

Moreover, by tuning U_i we can obtain AdS or dS without requiring an uplift:



BRANE-ANTIBRANE INFLATION

NON-LINEAR SUSY

We can describe the brane-antibrane scenario by implementing non-linear SUSY:

[See talk by Casagrande last Tuesday]

- ullet Chiral superfield T related to the Kähler modulus.
- Nilpotent non-chiral superfield $X^2 = 0$ (SUSY breaking sector).
- ullet Chiral superfield Φ involving the inflaton field ϕ (distance separation).

To incorporate these fields into a supersymmetric framework with accidental approximate scale invariance:

$$e^{-K/3} = \tau - k + \frac{h}{\tau} + \dots,$$

but now, $k = \kappa(\overline{\Phi}, \Phi, \ln \tau) + (X + \overline{X}) \kappa_X(\overline{\Phi}, \Phi, \ln \tau) + \overline{X}X \kappa_{\overline{X}X}(\overline{\Phi}, \Phi, \ln \tau).$

The most general superpotential is given by

$$W \simeq w_0(\Phi) + Xw_X(\Phi, \overline{\Phi}).$$

SCALAR POTENTIAL

The corresponding scalar potential is given by

$$V = \frac{A \mid w_x \mid}{\mathscr{D}^2} - \frac{2 \text{Re}(B \overline{w_X} w_0)}{\mathscr{D}^3} + \frac{C \mid w_0 \mid^2}{\mathscr{D}^4},$$
 where $A \simeq \frac{1}{3} \kappa^{\overline{X}X}$, $\frac{B}{\mathscr{D}} \simeq \kappa^{\overline{X}X} \kappa_{X\overline{T}}$ and $\frac{C}{\mathscr{D}^2} \simeq -3(\kappa_{\overline{T}T} - \kappa^{\overline{X}X} \kappa_{T\overline{X}} \kappa_{X\overline{T}})$ and $\mathscr{P} \sim \mathscr{V}^{2/3}$.

A local positive minimum can be found at:

$$\frac{1}{\mathscr{P}} = \frac{|\omega_X|}{|\omega_0|} D := \delta D, \quad \text{if} \quad \frac{8}{9} AC < B^2 < AC,$$

where

$$D \equiv \frac{3B}{4C} + \sqrt{\frac{9B^2}{16C^2} - \frac{A}{2C}} \quad \text{and} \quad \delta \equiv \frac{|\omega_X|}{|\omega_0|}.$$

To stay in the parametric supergravity regime: $\mathscr{P} \sim \frac{\epsilon^2}{\delta} \gg 1$ and therefore $\delta \ll \epsilon^2$.

In addition,
$$\epsilon_{\tau} \sim \left(\frac{V_{\chi}}{V}\right)^2 \sim \left(\tau \frac{V_{\tau}^2}{V}\right) \sim \mathcal{O}(1)$$
 and $m_{\tau}^2 = \left(\frac{\partial^2 V}{\partial \chi^2}\right)_{\tau_0} \sim \tau^2 \frac{\partial^2 V}{\partial \tau^2} \sim H_I^2$. (Single field analysis valid)

EFT ANALYSIS

INFLATIONARY REQUIREMENTS

To capture the antibrane tension and the separation-dependent Coulomb interaction we use the following superpotential:

$$W \simeq w_0(\Phi) + X w_X(\Phi, \overline{\Phi})$$
 with $\omega_X(\phi) = \mathfrak{t} - \frac{\mathfrak{g}}{\phi^4}$,

with ${\bf t}^3 \sim {\bf g} \sim e^{-6\rho}$ with ρ parameterising the warping. With this choice the leading

term in the scalar potential then is

$$V = \frac{\kappa^{\overline{X}X} |w_X|^2}{3\mathscr{P}^2} = \frac{\kappa^{\overline{X}X}}{3\mathscr{P}^2} \left[\mathbf{t}^2 - \frac{2\mathrm{Re}(\overline{\mathbf{t}}\mathfrak{g})}{\phi^4} + \dots \right],$$

with the following EFT and slow-roll conditions:

$$\delta \ll \epsilon^{2}$$

$$e^{\rho} \lesssim \mathcal{P}$$

$$\phi < \mathcal{P}^{-1/2}$$

$$\phi > \mathcal{P}^{-3/4}$$

 $m_{3/2} \lesssim M_{KK}$

Supergravity regime

Warped string scale < KK scale

Inter-brane distance < extra dim size

Inter-brane separation > string scale

Slow-roll inflation ($\epsilon \ll |\eta| \ll 1$)

Gravitino mass ≤ KK mass scale

SUMMARY AND CONCLUSIONS

CONCLUSIONS

- RG-induced modulus stabilisation is a novel alternative to KKLT and LVS motivated by the Dine-Seiberg argument and logarithmic corrections.
- In this scheme, inflation does not suffer the η -problem, which is present in other brane-antibrane inflation models (e.g. with KKLT stabilisation).
- Inflation seems to take place in the domain of validity of the EFT and therefore in the region of parametric control.
- We still need to study carefully if the end of inflation can be realised within the regime of control of the EFT.

EXTRA CREDITS

One more option to choose:

[A. Rakin, 2023 (Twitter)]

감사합니다

"The invisible and the non-existent look very much alike."

-S. Weinberg.

Mario Ramos Hamud Email: <u>mr895@cam.ac.uk</u> DAMTP | University of Cambridge

BACKUP SLIDES

TYPE IIB REALISATION

Bosonic action in IIB 10D supergravity:

$$S_{bulk} = \int d^{10}x \sqrt{-\tilde{g}} \left\{ \tilde{R} - \frac{|\partial \mathcal{S}|^2}{(\text{Re}\mathcal{S})^2} - \frac{|G_{(3)}|^2}{\text{Re}\mathcal{S}} - \tilde{F}_{(5)}^2 \right\} + \int \frac{1}{\text{Re}\mathcal{S}} C_{(4)} \wedge G_{(3)} \wedge \tilde{G}_{(3)}.$$

Two symmetries are present:

• $SL(2,\mathbb{R})$ symmetry

$$\mathcal{S} \to \frac{a\mathcal{S} - ib}{ic\mathcal{S} + d}$$
 and $G_{(3)} \to \frac{G_{(3)}}{ic\mathcal{S} + d}$ for $ad - bc = 1$.

When b = c = 0 and a = 1/d:

$$\tilde{g}_{MN} \to \tilde{g}_{MN}$$
, $\mathcal{S} \to a^2 \mathcal{S}$, $G_{(3)} \to a G_{(3)}$, and $\tilde{F}_{(5)} \to \tilde{F}_{(5)}$.

Approximate accidental scale invariance

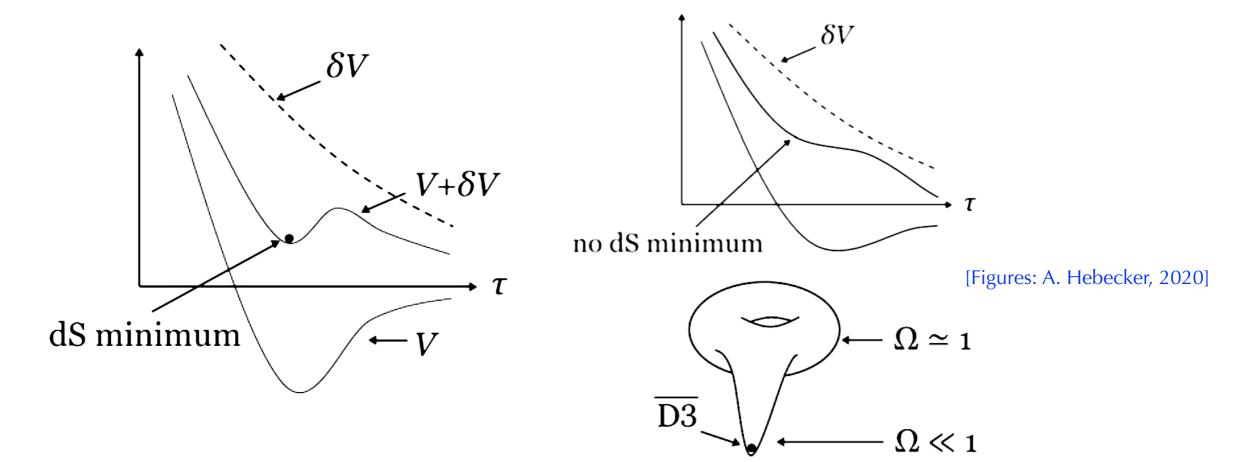
$$\tilde{g}_{MN} \to \lambda \tilde{g}_{MN}$$
, $\mathcal{S} \to \mathcal{S}$, $B_{(2)} \to \lambda B_{(2)}$, $C_{(2)} \to \lambda C_{(2)}$, and $\tilde{C}_{(4)} \to \lambda^2 \tilde{C}_{(4)}$,

With the tree-level action $S_{bulk} \to \lambda^4 S_{bulk}$. Upon compactification: $\mathcal{V} \to \lambda^3 \mathcal{V}$.

IIB MODULI STABILISATION

Non-Kähler moduli stabilised a là GKP with fluxes: $V_F = e^K (K_{a\overline{b}}^{-1} D_a W D_{\overline{b}} W) \ge 0$.

Quantum corrections alter the scalar potential: $\delta V \sim W_0^2 \delta K + W_0 \delta W$.



- KKLT: non-perturbative corrections $\delta W \sim e^{-a\tau} \sim W_0 \ll 1$. [KKLT, 2003]
- LVS: competition of corrections $\delta K \sim 1/\mathcal{V} \sim W_0 \, \delta W$. [BBQC, 2005]

77-PROB LEM

The Kähler potential very generally depends on both τ and ϕ :

$$K = -3\ln[\tau - k(\phi, \overline{\phi}) + \dots]$$
 where $k(\phi, \overline{\phi}) \simeq \overline{\phi}\phi + \dots$ (Kinetic term of ϕ)

Once τ is fixed by adding $W_{np}(T)$:

$$V = e^K \hat{V}_0 \simeq \frac{\hat{V}_0}{(\tau - \overline{\phi}\phi + \dots)^3} \simeq \frac{\hat{V}_0}{\tau^3} \left[1 + \frac{3\overline{\phi}\phi}{\tau} + \dots \right] \simeq \frac{\hat{V}_0}{\tau^3} \left[1 + \overline{\varphi}\phi + \dots \right],$$

where \hat{V}_0 contains small warp factors and depends so weakly on ϕ that inflation can be possible. Moreover, when the energy density is dominated by V:

$$H_I^2 \simeq \frac{V}{M_p^2} \simeq \frac{V_0^2}{\tau^3 M_p^2}$$
, and therefore $m_\phi^2 \sim \frac{V_0}{\tau^3 M_p^2} \sim H_I^2$.

$$\Rightarrow \eta = \frac{M_p^2 V_{\phi\phi}}{V} \simeq \frac{m_\phi^2}{H^2}$$

A lot of fine-tuning required to get slow-roll!

PARAMETERISATION

Experimentally, $n_s \sim 0.96$ and $\delta_H \sim 1.9 \times 10^{-5}$. Parameterising the coefficients as

$$A = \frac{1}{3}$$
, $B \simeq b\epsilon^2$ and $C \simeq a \frac{\epsilon^2 \alpha_g^2}{\mathscr{D}^2}$ with $\alpha_g \sim \epsilon$

$$1 \quad \delta \quad \left(3b \right) \quad \left[9b^2 \right] \quad 1$$

$$\Rightarrow \frac{1}{\mathscr{P}} = \frac{\delta}{\epsilon^2} \left(\frac{3b}{12(b^2 - a)} + \sqrt{\frac{9b^2}{144(b^2 - a)^2} - \frac{1}{18(b^2 - a)}} \right).$$

For a positive minimum: $-\frac{b^2}{8} < a < 0 \implies a = -\frac{b^2}{10}$ and $b = \frac{1}{3}$.

- Free parameters: ϵ , δ and w_0 .
- $g_s = \epsilon \ll 1$: string coupling constant plays the role of α_g in the RG-stabilisation.
- We impose $(\mathcal{P}g_s)^{3/2} \gg 1$ (no α' -corrections)
- We can finally parameterise:

$$\delta = 10^{-x} e^3$$
, $x > 0$ and $w_0 = 13 \times 10^{-y+x/2}$, $y > 0$.

INFLATIONARY REGIME

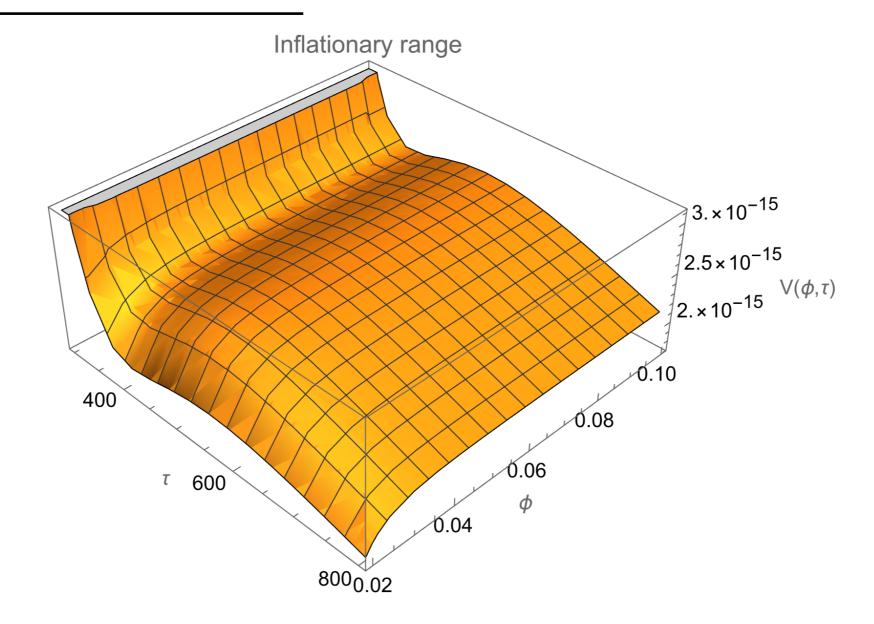


Figure: 3D potential in the inflationary regime. The field rolls down towards small ϕ and inflation eventually stops as the potential becomes steeper. This was calculated for 100 efolds.

