Perturbations in O(D, D) cosmology

Stephen Angus APCTP, Pohang based on

230x.xxxx (work in progress by SA and Shinji Mukohyama)

apctp

asia pacific center for theoretical physics

String Phenomenology 2023 Institute for Basic Science, 2023 July 6

O(D, D) cosmological perturbations

Motivation

- In general relativity, the metric $g_{\mu\nu}$ is the only gravitational field. ۲
- Dark matter, dark energy, tensions within Λ CDM (H_0 tension, lensing amplitude...) \Rightarrow need to move beyond GR cosmology?
- In string theory, the closed-string massless sector includes:
 - the metric, $g_{\mu\nu}$;
 - an antisymmetric 2-form potential, $B_{\mu\nu}$;
 - the dilaton, ϕ .
- Furthermore, these fields map into each other under T-duality.

Natural 'stringy' extension of general relativity:

Consider $\{g_{\mu\nu}, B_{\mu\nu}, \phi\}$ as the fundamental gravitational multiplet.

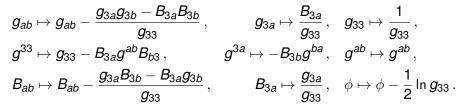
SOR

O(D, D) symmetry

Low-energy limit of string theory \supset bosonic (NS-NS) supergravity,

$$S = \int d^{D}x \sqrt{-g} e^{-2\phi} \left(R + 4\partial_{\mu}\phi \partial^{\mu}\phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} \right)$$

In addition to diffeo.s and *B*-field gauge symmetry, action is invariant under T-duality. For arbitrary backgrounds of $\{g_{\mu\nu}, B_{\mu\nu}, \phi\}$, generalizes to the Buscher transformation, e.g. $x^{\mu} = (x^a, x^3)$: (Buscher, 1987)



Looks highly non-trivial! Note that this typically changes the geometry. The full implied group of transformations is O(D, D), D = 0

Stephen Angus

3/17

Overview of double field theory

We can make the O(D, D) symmetry manifest using the formalism of double field theory (DFT). (Siegel; 1993) (Hull, Zwiebach; 2009)

- In DFT we describe *D*-dimensional physics using D + Dcoordinates, $x^{A} = (\tilde{x}_{\mu}, x^{\nu}), A = 1, \dots, 2D$.
- Doubled vector indices are raised and lowered using the $\mathbf{O}(D, D)$ -invariant \mathcal{J} :

$$\mathcal{J}_{AB} = \left(\begin{array}{cc} \mathbf{0} & \mathbf{1}_{D} \\ \mathbf{1}_{D} & \mathbf{0} \end{array}\right) = \mathcal{J}^{AB}$$

DFT also enjoys doubled diffeomorphism symmetry, which unifies ordinary diffeomorphisms and *B*-field gauge transformations.

SOR

・ロト ・ 雪 ト ・ ヨ ト ・

Double trouble?

What does it mean to 'double' the number of spacetime dimensions?
Olosure of doubled diffeomorphisms ⇒ section condition,

$$\partial_A \partial^A = 2 \, \partial_\mu \tilde{\partial}^\mu = 0 \, .$$

- A natural choice is $\tilde{\partial}^{\mu} = 0$ (all fields indep. of \tilde{x}_{μ}). The theory is not truly 'doubled': it is just a repackaging of *D*-dimensional physics.
- c.f. the level-matching condition for closed-string massless modes is $p_{\mu}\tilde{p}^{\mu} = 0$, where \tilde{p}^{μ} is the T-dual momentum. Translating this to position basis, we recover the section condition.

・ロト ・ 一 ト ・ 三 ト ・ 日 ト

Ingredients of double field theory

The basic fields of double field theory are:

- the DFT dilaton d, providing a scalar density e^{-2d} of unit weight;
- an O(D, D), symmetric DFT metric \mathcal{H}_{AB} , satisfying

$$\mathcal{H}_{AB} = \mathcal{H}_{BA}, \qquad \mathcal{H}_{A}{}^{C}\mathcal{H}_{B}{}^{D}\mathcal{J}_{CD} = \mathcal{J}_{AB}.$$

On Riemannian backgrounds (i.e. usual spacetime), with the section choice $\tilde{\partial}^{\mu} = 0$: $\{d, \mathcal{H}_{AB}\} \rightarrow \{g_{\mu\nu}, B_{\mu\nu}, \phi\}$, such that

$$e^{-2d}=e^{-2\phi}\sqrt{-g}\,;\qquad \mathcal{H}_{AB}=\left(egin{array}{cc} g^{\mu
u}&-g^{\mu\sigma}B_{\sigma
u}\ B_{\mu
ho}g^{
ho
u}&g_{\mu
u}-B_{\mu
ho}g^{
ho\sigma}B_{\sigma
u}\
ight)\,.$$

Buscher transformations are simply linear O(D, D) rotations of \mathcal{H} . The DFT Ricci scalar gives the 'stringy' gravitational Lagrangian,

$$\mathcal{R} = \mathcal{R} + 4\Box \phi - 4\partial_\mu \phi \partial^\mu \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu}$$
 .

DFT coupled to matter

We can extend O(D, D) covariance to interactions with matter $\{\Upsilon_a\}$,

$$S = \int_{\Sigma} e^{-2d} \left[\frac{1}{16\pi G} \mathcal{R} + \mathcal{L}_{\mathrm{m}}(\Upsilon_{a}) \right],$$

where $L_{\rm m}$ is an $\mathbf{O}(D, D)$ -covariant Lagrangian for the additional matter fields { Υ_a }, and the integral is taken over a *D*-dimensional section Σ . Varying this action yields a DFT generalization of Einstein's equations, (SA, Cho, Park (2018))

$$G_{AB}=8\pi GT_{AB}\,,$$

where the DFT energy-momentum tensor T_{AB} is conserved on-shell. Note: O(D, D) covariance \Rightarrow volume element must always be e^{-2d} .

DQ C

Riemannian spacetime backgrounds

EDFEs give closed-string equations of motion plus source terms,

$$\begin{split} R_{\mu\nu} + 2 \nabla_{\mu} (\partial_{\nu} \phi) - \frac{1}{4} H_{\mu\rho\sigma} H_{\nu}^{\rho\sigma} &= 8\pi G K_{(\mu\nu)} ; \\ \nabla^{\rho} \Big(e^{-2\phi} H_{\rho\mu\nu} \Big) &= 16\pi G e^{-2\phi} K_{[\mu\nu]} ; \\ R + 4 \Box \phi - 4 \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{12} H_{\lambda\mu\nu} H^{\lambda\mu\nu} &= 8\pi G T_{(0)} , \end{split}$$

where $K_{\mu\nu}$ and $T_{(0)}$ source \mathcal{H}_{AB} and d, respectively.

Many common fields, particles, etc. admit a DFT embedding, from which we can derive their DFT energy-momentum tensors explicitly. Generally, $K_{\mu\nu}$ gives the kinetic part and $T_{(0)}$ the trace contribution.

Note: asymmetric $K_{\mu\nu}$ possible (e.g. fermions, strings) \rightarrow source for H, which gives a topological obstruction to dualizing H to an axion.

= nac

Interpretation of $K_{\mu\nu}$ and $T_{(0)}$

Can arrange DFT energy-momentum tensor into terms sourcing

$$\begin{split} \delta g_{\mu\nu} : & T_{\mu\nu} \equiv e^{-2\phi} \left(\mathcal{K}_{(\mu\nu)} - \frac{1}{2} g_{\mu\nu} \mathcal{T}_{(0)} \right) \,, \\ \delta B_{\mu\nu} : & \Theta_{\mu\nu} \equiv e^{-2\phi} \mathcal{K}_{[\mu\nu]} \,, \\ \delta\phi : & \sigma \equiv e^{-2\phi} \mathcal{T}_{(0)} \,. \end{split}$$

Here $T_{\mu\nu}$ is the usual energy-momentum tensor in GR, while $\Theta_{\mu\nu}$ and σ represent sources for $B_{\mu\nu}$ and ϕ , respectively.

On-shell conservation of DFT energy-momentum tensor gives

$$\nabla^{\mu}T_{\mu\nu} + \frac{1}{2}H_{\nu}^{\ \mu\lambda}\Theta_{\mu\lambda} - \nabla_{\nu}\phi\,\sigma = \mathbf{0}\,, \qquad \nabla^{\mu}\Theta_{\mu\nu} = \mathbf{0}\,.$$

If we convert to Einstein frame via $g_{\mu\nu} \equiv e^{2\phi} \widetilde{g}_{\mu\nu}$, components given by

$$\widetilde{T}_{\mu\nu} \equiv e^{2\phi} T_{\mu\nu}, \qquad \widetilde{\Theta}_{\mu\nu} \equiv \Theta_{\mu\nu}, \qquad \widetilde{\sigma} \equiv e^{4\phi} (\sigma + T^{\mu}{}_{\mu}).$$

Cosmology in DFT

Now consider D = 4 homogeneous and isotropic solutions in DFT. Solving for these isometries in DFT yields the gravitational ansatz

$$\mathrm{d}\boldsymbol{s}^2 = -\boldsymbol{N}(t)^2 \mathrm{d}t^2 + \boldsymbol{a}(t)^2 \left[\frac{\mathrm{d}r^2}{1-kr^2} + r^2 \mathrm{d}\Omega^2\right] \;,$$
$$\boldsymbol{B} = \frac{hr^2}{\sqrt{1-kr^2}} \cos\vartheta \,\mathrm{d}r \wedge \mathrm{d}\varphi \;, \quad \phi = \phi(t) \;.$$

This gives $H = dB = h \operatorname{Vol}_3$ which is homogeneous and isotropic.

For matter, the DFT energy-momentum tensor is constrained as

$$K^{\mu}{}_{\nu} = \operatorname{diag}(K^{t}{}_{t}(t), K^{r}{}_{r}(t), \dots, K^{r}{}_{r}(t)), \quad T_{(0)} = T_{(0)}(t).$$

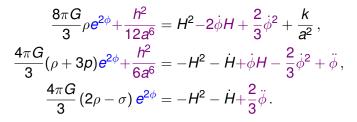
Note: energy density and pressure,

$$\rho := \left(-\mathcal{K}^t_t + \frac{1}{2}\mathcal{T}_{(0)}\right) e^{-2\phi}, \qquad p := \left(\mathcal{K}^r_r - \frac{1}{2}\mathcal{T}_{(0)}\right) e^{-2\phi}.$$

O(*D*, *D*)-complete Friedmann equations

Choose e.g. cosmic gauge, N(t) = 1 H ≡ a/a. From the EDFEs we obtain O(D, D)-complete Friedmann equations (OFEs),

(SA, Cho, Franzmann, Mukohyama, Park; 2019)



DFT e-m conservation yields one non-trivial conservation law,

$$\dot{
ho} + \mathbf{3}H(
ho + oldsymbol{
ho}) + \dot{\phi}\sigma = \mathbf{0}$$
 .

= nac

Properties of the OFEs

The OFEs have various interesting properties.

- 3 OFEs + 1 conservation law ⇒ 3 independent equations (c.f. GR cosmology, which has 2 Friedmann eq.s + 1 conservation law).
- If $\dot{\phi} = \ddot{\phi} = 0$, $h = 0 \Rightarrow$ GR cosmology; $\sigma \equiv \rho 3p$ ('critical line').
- It is useful to define two equation-of-state parameters,

$$\mathbf{w} := rac{\mathbf{p}}{
ho}; \qquad \lambda := rac{\sigma}{
ho}.$$

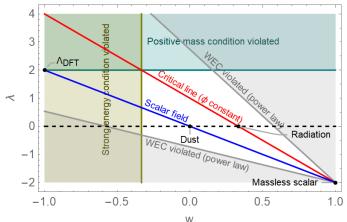
- *w* is the usual parameter corresponding to pressure, while λ is the ratio of the dilaton source to the energy density.
- For constant *w* and λ ("generalized perfect fluid"), we can solve:

$$ho =
ho_0 rac{e^{-\lambda\phi}}{a^{3(1+w)}}$$

= non

Cosmological solutions

Identify various regions and types of matter in the (w, λ) -plane.



Also, pure DFT vacuum: $\rho = 0$ (Copeland, Lahiri, Wands; 1994) Note: Naive supergravity case is $\lambda = 0 \Rightarrow$ radiation critical, dust is not.

Solution: radiation with H-flux and freezing dilaton

E.g. there is an analytic solution for radiation (w = 1/3, $\lambda = 0$), with non-vanishing H-flux, in which the dilaton is frozen at late times.

Einstein-frame scale factor,

$$\widetilde{a}^2 = rac{ au(C_1+\Omega_{
m rad}H_0^2 au)}{1+k au^2}; \quad au = \left\{ egin{array}{ccc} au(\eta-\eta_0) & ext{ for } k=1\ \eta-\eta_0 & ext{ for } k=0\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ tanh}(\eta-\eta_0) & ext{ tanh}(\eta-\eta_0) & ext{ for } k=-1\ au & ext{ tanh}(\eta-\eta_0) & ext{ t$$

• The dilaton profile is (c.f. *h* = 0: Copeland, Lahiri, Wands; 1994)

$$\mathbf{e}^{2\phi} = \left(\frac{C_{1}\tau}{\tau_{*}\left(C_{1}+\Omega_{\mathrm{rad}}H_{0}^{2}\tau\right)}\right)^{\pm\sqrt{3}} + \frac{1}{12}\frac{h^{2}}{C_{1}^{2}}\left(\frac{C_{1}\tau}{\tau_{*}\left(C_{1}+\Omega_{\mathrm{rad}}H_{0}^{2}\tau\right)}\right)^{\mp\sqrt{3}},$$

which converges to a constant as $\eta \to \infty$ (for $k \in \{0, -1\}$).

 For nonzero h, the string-frame scale factor a = ãe^φ has a minimum ⇒ purely classical bouncing cosmology.

Cosmological perturbations

In conformal gauge (N = a), write the perturbed metric as

$$m{g}_{\mu
u}=m{a}^2\left(egin{array}{cc} -(1+2m{A}) & m{B}_j\ m{B}_i & \delta_{ij}+m{h}_{ij} \end{array}
ight)$$

Under a scalar-vector-tensor (SVT) decomposition, these separate as

$$B_{i} \equiv \hat{B}_{i} + \partial_{i}B, \qquad h_{ij} \equiv 2C\delta_{ij} + 2(\partial_{i}\partial_{j} - \frac{1}{3}\delta_{ij}\nabla^{2})E + 2\partial_{(i}\hat{E}_{j)} + \hat{E}_{ij}$$
$$(\partial^{i}\hat{B}_{i} = 0, \ \partial^{i}\hat{E}_{i} = 0, \ \partial^{i}\hat{E}_{ij} = 0 \text{ and } \hat{E}^{i}{}_{i} = 0). \text{ For the } B\text{-field, expand}$$

$$\delta B_{(2)} \equiv f_i \,\mathrm{d} x^i \wedge \mathrm{d} \eta + rac{1}{2} m_{ij} \,\mathrm{d} x^i \wedge \mathrm{d} x^j \,,$$

where $f_i = \partial_i f + \hat{f}_i$, $m_{ij} = \partial_i \hat{m}_j - \partial_j \hat{m}_i + \sqrt{g_3} \epsilon_{ijk} \partial^k m (\partial^i \hat{f}_i = \partial_i \hat{m}^i = 0)$.

Energy-momentum tensors: $T_{\mu\nu}$ has the standard SVT decomposition, while the non-trivial components of $\Theta_{\mu\nu}$ decompose as

$$\mathcal{J}_i = \partial_i \mathcal{J} + \hat{\mathcal{J}}_i, \qquad \mathcal{I}^i = \partial^i \mathcal{I} + \hat{\mathcal{I}}^i.$$

Scalar perturbations

E.g. scalar perturbations around DFT vacuum. Work in Einstein frame; spatially flat gauge, $\tilde{C} = \tilde{E} = 0$; expand in Fourier modes, $\partial_i \rightarrow ik_i$:

$$\begin{split} \mathbf{0} &\simeq \left[\partial_0^2 + 2\tilde{\mathcal{H}}\partial_0 + k^2\right] \tilde{A}, \qquad \partial_0 \tilde{A} \simeq k^2 \tilde{B}, \\ -4h\left((\tilde{\mathcal{H}} + \partial_0 \bar{\phi})B + \delta\phi\right) \simeq \left[\partial_0^2 - \left(2\tilde{\mathcal{H}} + 4\partial_0 \bar{\phi}\right)\partial_0 + k^2\right] m, \\ &- \frac{e^{-4\bar{\phi}}h}{2\tilde{a}^4}k^2m \simeq \left[\partial_0^2 + 2\tilde{\mathcal{H}}\partial_0 + k^2 + \frac{2e^{-4\bar{\phi}}h^2}{\tilde{a}^4}\right]\delta\phi, \end{split}$$

along with two constraint equations relating \tilde{A} , $\delta \phi$ and m.

For h = 0, reduces to damped oscillator equations. (e.g. Mueller; 1990) Extra *h*-dependent terms mix components. (SA, Mukohyama; in progress)

ъ

SOR

Summary

- Double field theory coupled to matter gives a 'stringy' modified gravity; O(D, D) symmetry constrains the allowed interactions.
- The energy-momentum tensor has additional components corresponding to sources for $B_{\mu\nu}$ and ϕ .
- On homogeneous and isotropic backgrounds, DFT coupled covariantly to matter gives O(D, D) Friedmann equations.
- Various analytic solutions, including a bouncing solution with radiation, non-vanishing H-flux, and frozen dilaton at late times.
- Scalar perturbations mix in the presence of background *H*-flux. Non-trivial implications for structure formation?
- Future directions: *H*-flux baryogenesis, redshift due to dilaton-photon coupling, CMB observables...

=

SOR