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based on works in collaboration with G. Shiu and H.V. Tran
- Accelerating universe at the end of time [hep-th/2303.03418]
- Late-time attractors and cosmic acceleration [hep-th/2306.07327]
[+ see also G. Shiu’s talk in the plenary session]



ACCELERATED COSMOLOGICAL EXPANSION AND STRING THEORY

P observations:

present-day accelerated cosmic expansion,
huge scale hierarchies

P> string-theoretic considerations:
all couplings are dynamical (g = g(¢))

e Dine-Seiberg problem: hard to find weakly-coupled vacua
e small coupling constants: possibly natural at field-space boundary
[see G. Shiu’s talk]
[+ also A. Hebecker, D. Andriot, T. Wrase and M. Scalisi’s talks]

main idea:

characterize scalar-field cosmological solutions
that asymptotically approach the moduli-space boundary
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SETUP AND OUTLINE

P> field content:

e canonically-normalized scalars ¢, a = 1,...,n

- e.g. string theory (minimal, unless stabilized): dilaton, radions
m
e multi-exponential potential V = ZAi e Favia®"
i=1
- e.g. string theory: non-trivial curvature, NSNS-fluxes, heterotic
Yang-Mills fluxes, type-1l RR-fluxes, type-Il D-brane/O-plane
sources and generic Casimir-energy terms
[see G. Shiu’s talk]

P geometry: FLRW-metric d5} ; | = —dt* + a*(t) dIZ, ., with H = %

H
e-parameter: ¢ = T s 1 4 ¢; accelerated expansion if € < 1

in this talk, we will see:
1. a wniversal bound on late-time cosmic acceleration

2. a class of theories with a universal cosmological attractor solution
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1. BOUNDS ON COSMIC ACCELERATION
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LATE-TIME BOUNDS ON COSMIC ACCELERATION

v, ~v% = min; v,* >0
ifall A, >0, let v% = c
0, ¥4 <0

then analytic late-time bounds

d—2

a—12e> 20
[see G. Shiu’s talk]
example: [mathematical proofs in the papers]
3
Voo2 V = A_L e*"d%a‘ﬁa
M3 Y32 =1
A
a _ 41 42
g Pt =9¢",0
V22 Y11 N2
(7a0)? = (7402 Yia = | Y21 722
124 H1 Y31 V32
o
V31 Y21 Y11 >t

4/14



COSMIC-ACCELERATION BOUND: MAXIMIZATION

P> the bound can be maximized by a field-space basis rotation:

—2

example:

Y12
V22
V32
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DILATON OBSTRUCTION TO COSMIC ACCELERATION

for the canonical string-frame radion & and the canonical d-dim. dilaton (5
any perturbative potential term has the Einstein-frame form V = A e/al759—757]

e model-dependent &-coupling

d
o for worldsheet Euler character xg, universal 75 = —s " X7E\/d -2
general string-theoretic considerations:
2
P upper bound on ;1 xg < xg(S?) =2, s0 75 > —
d—2 d—2
P lower bound on e: € > — (Yoo )? > 1 752> 1

possible ways out:
- theory not at weak string coupling
- stabilized dilaton
- presence of negative-definite potential terms:
bound takes a different form, less obvious but still restrictive!
[discussion of potentials with terms of both signs in the papers]

[more in upcoming work]
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2. SCALING COSMOLOGIES
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SCALING COSMOLOGIES: GENERAL CHARACTERIZATION

P> scaling cosmologies are solutions with constant positive e
1

t\e
e power-law scale factor: a(t) = ay|( —
o\,

P complete analytic characterization, if rank%a =m (where M,; = v,,7,):

o field-space trajectory ¢%(t) = ¢% + — [Z Z% ] In *

i=1 j=1 tO
d—2 m m s -1
e c-parameter € = 1 ZZ(M )9
=1 j=1
Collinucci, Nielsen, Van Riet [hep-th/0407047]
P notes:

T -V, 2 . : ov 1

e no slow roll: w= T:—f—V: :—1+d7_61, ¢fo<H¢fjo<mo<t—2

2
o all scalar-potential terms decay identically: V;[¢%(t)] = V;(to) (?>
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SCALING COSMOLOGIES: RELEVANCE

- late-time scale factor is bounded by power-law behaviors

d—2 .
remember: d —1>¢ > 4 (%0)2

- scaling solutions are perturbative late-time attractors
see e.g. Hartong, Ploegh, Van Riet, Westra [gr-qc/0602077]

P new result:

we can analyically prove that

o if all terms in the potential are positive-definite, i.e. if A; >0
m m
o if Xl = Z(Mfl)ij >0 and Z Aé > 0 (i.e. no subdominant terms)
then scaling]c=olsmo|ogies are Iate—?ir%e attractors, irrespectively of initial
conditions, and saturate the universal bound, i.e. they have ¢ = %2 (Ao )?

[mathematical proof in the papers]
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SCALING COSMOLOGIES: FIELD-SPACE TRAJECTORY

field-space trajectory is a straight line

¢ .
original field basis: e Toge— “
; ot * T Vad
#L(t) = 9% + —In —
Kq too

rotated field basis:

\ ’

ha ha 0)(1/

P(t) = o5 ¢°
2

5.(0) = o + 1 1 t >
Bo(t) = oo+ ——1In—
* Ka Vs too /

note: on-shell potential V, = A e "a%-%-

P> exact relationship between scalar-potential slope and e-parameter:

L, OV 1

oV oV 2,/€
V F kg 008

il Gq&a@TSa(qb*): s

to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]

Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]
false for generic solution ¢®, unless 1, = 0 (n = —¢/(¢H), Q: non-geodesity):
1 _

_ 1 ¢t v 1 jov oV
7(6777) - _V (ébq;b Ky a¢a (¢) < KdV 8¢a a¢a (¢) - 7(67 s Q)

Achlcarro, Palma [hep-th/1807.04390]
see also Andriot, Horer, Tringas [hep-th/2212.04517]
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SCALING COSMOLOGIES: NON-SLOW-ROLL GRADIENT FLOW

a

P in a scaling cosmology (no slow roll), we have ¢%(t) = ¢% + % In ;o so
d

a(t) = — a
s B =g
. 1 d—1
d—1)H (1) = — a
s - DHEW) = g T e
we can plug these into the scalar-field eq. to find the trajectory, i.e.
. . € . oV
¢ —1H! = |1 — —1)Hp! = ——(¢
i+ (@ - vs = 1= 25| @ - v =57 )

as the proportionality factor between aﬁf and 9V /9¢,,, is universal, this happens
to give a non-slow-roll gradient-flow trajectory (note: irrespectively of €)

P> in the slow-roll regime, one approximates

o<1 1A%
La _ la o _ ja — _ T
ST + (d 1)H(‘)5r - (d 1)H(e‘)sr (r)() ((‘)Sl‘)

conclusion:
although the field-space trajectory is accidentally the same,
the physics (i.e. the time dependence of fields) is completely different
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SCALING COSMOLOGIES: COUPLING CONVEX HULL

examples: o
¢a — (f)l7 @2
Voo2 Yoo2
;;2 Ha - yy = Y11 M2
= b Y21 V22
Vo2
Y12 Hq Y12 R M1
(3)2 (Foc)2
at v
Y21 Y11 >l Y21 Y11 >t

if distance vector from the origin to the convex-hull coupling hyperplane
intersects convex hull itself too, we analytically find the late-time e-parameter

=12 = 22 S

=1
. . d—2 .
else, we speculate that the potential is truncated, leaving € = 1 (Voo)

[more in upcoming work]
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3. CONCLUSIONS
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P analytic model-independent results, and handle on swampland conjectures:
e universal:

- bound for cosmic acceleration
1-field 1-potential case: see also Rudelius [hep-th/2208.08989]

- string-theoretic dilaton obstruction to acceleration and ways out
compatible with strong de Sitter conjecture in Rudelius [hep-th/2101.11617]

- general tension for slow roll
e scaling cosmologies:
- proof of convergence, irrespectively of initial conditions

- relationship between acceleration and scalar-potential derivatives
to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]
Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

- convex-hull criterion to diagnose cosmic acceleration

P other swampland conjectures:

e precise handle on attempts for string-theoretic accelerated expansion
Calderén-Infante, Ruiz, Valenzuela [hep-th/2209.11821]
Cremonini, Gonzalo, Rajaguru, Tang, Wrase [hep-th/2306.15714]

e importance of dynamical considerations in the swampland program
Apers, Conlon, Mosny, Revello [hep-th/2212.10293]

e asymptotic acceleration implies higher-dimensional de Sitter spacetime
Hebecker, Schreyer, Venken [hep-th/2306.17213]

Thank you!
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4. BACKUP MATERIAL
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ANALYSIS OF THE ACCELERATION BOUND

BOUND MAXIMIZATION AND PHYSICAL INTERPRETATION

P> the bound can be maximized by a field-space basis rotation

¢a — Gs)l’ ¢2
Y11 M2
Yia = | Y21 722
Y31 V32

P> in the optimal basis:

V = [i AG e*'@d:hyaéé:| e*'id:Yoo{O + zm: AL e*”d%@@*“d’%alﬁé
o=1 t=m+1
. D Y A G . d—2 .
- the 1-field 1-term potential Vj = A e "¢~ would give € = T’ygo
- the presence of other fields creates further steepness
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GENERAL BOUND AND SCALING COSMOLOGIES

observation:

even if (v,,)2 = 0, scaling cosmologies automatically saturate bound

VYoo2
Y12 H1 " =o', ¢?
Y11 M2
’Y, =
h (721 722)
V21
Y
Y11 !
('3’00)2 = KcH
V22
Mo
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ACCELERATION BOUND: AN OPTIMISTIC SCENARIO

observation:

there are plenty of possibilities for late-time acceleration!

7002

2% V32 ¢ = o', ¢?
Y12 M1 - Y11
e Y21

Va1
Vool

31 A =0 T
Y22
Ho

Y12
V22
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EXAMPLE

. . . 5 HL— 2 72 B ~ ~
4-dimensional potential: V = A, V20T ra 507 Ay e ra V2O Ry V662
Calderén-Infante, Ruiz, Valenzuela [hep-th/2209.11821]

23 V6
- convex-hull hyperplane: v, = 5 " — 5
3 2v/2 6
- orthogonal line: v, = £ v1, intersection at (v,7,) = (—i,—i)
2 7 7
Yoo2 ¢a — C)l,@2
" N, = T M2 ) _ -2 %
1 V12 ia Vo1 oo N
T
> VYoo
M1 \ !
(790)2:20 i/ 2v2\2 V621 1
R () -
V2 = —@ M
V22 Ha 72:_%§%_§
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SCALING COSMOLOGIES

SCALAR-POTENTIAL DERIVATIVES AND COSMIC ACCELERATION

P> exact relationship between scalar-potential slope and e-parameter:

ov 1 [ov ov 2./

1 a _ I _ _
_‘7/ *K/da(ﬁa *)_fde 8¢a6¢a(¢*)_ d_2_7*

to compare with Obied, Ooguri, Spodyneiko, Vafa [hep-th/1806.08362]
Ooguri, Palti, Shiu, Vafa [hep-th/1810.05506]

P> the potential directional derivative and gradient norm
are not necessarily related to € for non-scaling solutions

a generic solution ¢"(t), gives (7 = —¢/(eH ), : non-geodesity factor)

R S | NG [ n
Ty Ly kg 000 Jd—2 Ll (d—1)—¢
Py

1 ov ov - |, 4e 1 02
1= e\ 6,000 T\ T s o - A

Achtcarro, Palma [hep-th/1807.04390]
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