

A Boltzmann equation approach to string thermodynamics

Gonzalo Villa de la Viña With A. R. Frey, R. Mahanta, A. Maharana, F. Muia and F. Quevedo StringPheno '23, IBS, Daejeon

Why string thermodynamics: pheno aspects Review: Cicoli *et al* '23

- Heat up a box of anything: stringy modes will eventually be excited.
- It is common in the early Universe to find energy densities of order one in string units.
- Influences in reheating, possible GW spectrum, moduli problem...
- Most likely out of equilibrium processes are important!

d=0 case: Lowe and Thorlacius'95 *d=0* with D-branes: Lee and Thorlacius'97

Why Boltzmann equations

- An invaluable window to out-of-equilibrium physics.
- Equilibrium is a subtle concept in presence of gravity:
 - Gravity is dynamical: Jeans instability.
 - Expanding Universe.
- Knowledge of interaction rates allows to estimate when (and whether) equilibrium is a good approximation.

A phase space for string theory

- Consider a string in a D-dimensional spacetime, with d noncompact directions.
- The phase space is given by the position, noncompact momenta, oscillator level, winding and KK modes.

$$E_l^2 = k^2 + \frac{2}{\alpha'}(N + \tilde{N} - 2) + \sum_{i=1}^{d_c} \left(\frac{n_i}{R_i}\right)^2 + \left(\frac{\omega_i R_i}{\alpha'}\right)^2$$
$$M^2 = (\mu l)^2$$

• Hence describe the thermodynamics with a distribution on a generalized phase space $f(r, k, N, \sigma) \equiv f(E_l, l)$

Decay rates: summing over our ignorance

- Interaction rates of highly excited strings are hard to compute.
- In thermodynamics, we are interested in how the average string looks like.
- Consider the averaged semi-inclusive decay rate:

•
$$N \iff V_1 + N_2$$

 $\frac{F(N, N_2)}{\mathcal{G}(N)} \equiv \frac{1}{\mathcal{G}(N)} \sum_{\Phi_N} \sum_{\Phi_{N_2}} |\langle \Phi_{N_2} | V_1(k) | \Phi_N \rangle|^2$
 $F(N, N_2) = \oint_C \frac{dz}{z} z^{-N} \oint_{C_2} \frac{dz_2}{z_2} z_2^{-N_2} \operatorname{Tr} \left[z^{\hat{N}} V_1^{\dagger}(k, 1) z_2^{\hat{N}} V_1(k, 1) \right]$

Amati and Russo'99

Understanding the typical string

- The string prefers to decay into configurations with small external kinetic energy and with KK and winding mode energies proportional to the length.
 Mañes'01 Chen et al'05
- It follows that the typical string is described by its length (approximately, level).
- The decay rate looks like:

The Boltzmann equation for the typical string

- Recap: we want to describe the thermodynamics of string theory in terms of the average string, well described by the length and the number of non-compact dimensions.
- We have computed the interaction rates, so we can write:

$$\begin{aligned} \frac{\partial n_c(l)}{\partial t} &= \frac{\kappa}{2} \int_{l_c}^{l-l_c} dl' \left(\frac{n_c(l')l' n_c(l-l')(l-l')}{V} - ln_c(l) \left(\frac{l}{l'(l-l')} \right)^{d/2} \right) + \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \left(l'n_c(l') \left(\frac{l'}{l(l'-l)} \right)^{d/2} - \frac{ln_c(l)(l'-l)n_c(l'-l)}{V} \right). \end{aligned}$$

Consistency check

• The equilibrium solution obtained from imposing detailed balance reads

$$n_c(l) = V \frac{e^{-l/L}}{l^{1+d/2}},$$
$$1/L = \beta - \beta_H.$$

 These results agree with general considerations in equilibrium thermodynamics, provided winding and KK modes are taken into account.

Deo *et al*'89 Deo *et al*'92

Boltzmann equations with open strings

$$\begin{split} \frac{\partial n_c(l)}{\partial t} &= + \frac{b}{2N} V_{\perp} \frac{n_o(l)}{l^{d/2}} - a \frac{N}{V_{\perp}} ln_c(l) + \\ &+ \frac{\kappa}{2} \int_{l_c}^{l-l_c} dl' \left(\frac{n_c(l')' n_c(l-l')(l-l')}{V} - ln_c(l) \left(\frac{l}{l'(l-l')} \right)^{d/2} \right) + \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \left(\frac{n_c(l')}{l^{d/2}} - \frac{ln_c(l)(l'-l)n_c(l'-l)}{V} \right) + \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \left(\frac{(l'-l)n_o(l')}{l^{d/2}} - \frac{ln_c(l)(l'-l)n_o(l'-l)}{V} \right) \right) . \end{split}$$

$$\begin{aligned} \frac{\partial n_o(l)}{\partial t} &= + a \frac{N}{V_{\perp}} ln_c(l) - \frac{b}{2N} V_{\perp} \frac{n_o(l)}{l^{d/2}} \\ &+ \int_{l_c}^{l-l_c} dl' \left(\frac{b}{2NV_{\parallel}} n_o(l')n_o(l-l') - a \frac{N}{V_{\perp}} n_o(l) \right) \\ &+ \int_{l+l_c}^{\infty} dl' \left(2a \frac{N}{V_{\perp}} n_o(l') - \frac{b}{NV_{\parallel}} n_o(l)n_o(l'-l) \right) \\ &+ \kappa \int_{l_c}^{l-l_c} dl' \left(\frac{l'(l-l')n_c(l')n_o(l-l')}{V} - n_o(l) \frac{l-l'}{l'^{d/2}} \right) \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \left(\frac{n_o(l')l}{(l'-l)^{d/2}} - \frac{ln_o(l)(l'-l)n_c(l'-l)}{V} \right) \end{split}$$

Boltzmann equations with Dbranes

$$\begin{split} \frac{\partial n_c(l)}{\partial t} &= \frac{b}{2N} \frac{n_o(l)}{l^{p/2}} - a \frac{N}{V_\perp} ln_c(l) \\ &+ \frac{\kappa}{2} \int_{l_c}^{l-l_c} dl' \left(\frac{n_c(l')l' n_c(l-l')(l-l')}{V} - ln_c(l) \left(\frac{l}{l'(l-l')} \right)^{d/2} \right) + \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \left(\frac{n_c(l')}{l^{d/2}} - \frac{ln_c(l)(l'-l)n_c(l'-l)}{V} \right) + \\ &+ \kappa \int_{l_l+l_c}^{\infty} dl' \int_{l_c}^{l'-l-l_c} \frac{dl_x}{(l_x(l'-l-l_x))^{(d-p)/2}} \left(\frac{n_o(l')l'^{(d-p)/2}}{l^{d/2}} - \frac{ln_c(l)}{V} n_o(l'-l)(l'-l)^{(d-p)/2} \right) \end{split}$$

$$\begin{split} \frac{\partial n_o(l)}{\partial t} &= + a \frac{N}{V_{\perp}} ln_c(l) - \frac{b}{2N} \frac{n_o(l)}{l^{p/2}} \\ &+ \int_{l_c}^{l-l_c} dl' \left(\frac{b}{2NV_{\parallel}} n_o(l') n_o(l-l') - aNn_o(l) \left(\frac{l}{l'(l-l')} \right)^{(d-p)/2} \right) \\ &+ \int_{l+l_c}^{\infty} dl' \left(2aNn_o(l') \left(\frac{l'}{l(l'-l)} \right)^{(d-p)/2} - \frac{b}{NV_{\parallel}} n_o(l) n_o(l'-l) \right) \\ &+ \kappa \int_{l_c}^{l-l_c} dl' \int_{l_c}^{l-l'-l_c} \frac{dl_x}{(l_x(l-l'-l_x))^{(d-p)/2}} \left(\frac{l'n_c(l')n_o(l-l')}{V} (l-l')^{(d-p)/2} - \frac{n_o(l)}{l'^{d/2}} l^{(d-p)/2} \right) \\ &+ \kappa \int_{l+l_c}^{\infty} dl' \int_{l_c}^{l-l_c} \frac{dl_x}{(l_x(l-l_x))^{(d-p)/2}} \left(\frac{n_o(l')}{(l'-l)^{d/2}} l^{\prime(d-p)/2} - \frac{n_o(l)(l'-l)n_c(l'-l)}{V} l^{(d-p)/2} \right) \end{split}$$

Out of equilibrium: equilibration rates

• Consider perturbations around the equilibrium solution in d=0:

$$\frac{\partial \delta n(l,t)}{\partial t} = -\left(\frac{l^2}{2} + lL\right)\delta n(l,t) + \int_0^l dl' \, l' \delta n(l',t) \left(e^{\frac{-(l-l')}{L}} - 1\right) - E\left(e^{-l/L} - 1\right) \,,$$

Out of equilibrium: equilibration rates

• Consider perturbations around the equilibrium solution in d=0:

$$\frac{\partial \delta n(l,t)}{\partial t} = -\left(\frac{l^2}{2} + lL\right)\delta n(l,t) + \int_0^l dl' \, l' \delta n(l',t) \left(e^{\frac{-(l-l')}{L}} - 1\right) - E\left(e^{-l/L} - 1\right) \, dl' \,$$

• We find zero-energy solutions of the form:

$$\delta n(l,t) = \frac{e^{-l/L}}{L} + \sqrt{\frac{\pi(c+tL^2)}{2}} \frac{e^{-\frac{l}{L}+A(t)^2}}{L} \operatorname{Erf}\left(\sqrt{\frac{c+tL^2}{2}}\frac{l}{L} + A(t), A(t)\right),$$

• Qualitatively, find a length-dependent equilibration rate: $\delta n(l,t) \sim \delta n(l,0)e^{-\left(\frac{l^2}{2}+lL\right)t}$

Conclusions and future directions

- We have described string thermodynamics in terms of the *typical* string, described by its length and the number of non-compact directions.
- The equilibrium conditions we find agree with general equilibrium considerations, a non-trivial consistency check of the interactions.
- We are able to probe the out-of-equilibrium regime, showing stability and computing equilibration rates.
- We plan on applying these results to do phenomenology.

A first view of Boltzmann equations

- Boltzmann equations describe the temporal evolution of the probability density.
- Consider the process $A \leftrightarrow B + C$

$$\frac{\partial f_A}{\partial t} = -f_A \Gamma_r (1 \pm f_B) (1 \pm f_c) + f_B f_C \Gamma_l (1 \pm f_A)$$

• A generic contribution to the Boltzmann equation for a string in a specified state looks like:

$$\frac{\partial f(E_l,l)}{\partial t} \supset \sum_{\sigma_x \sigma_y} \int_{\mathbb{R}^p} d^p k_x \, d^p k_y \, \mathcal{A}\left(f_x f_y \left(1 \pm f_l\right) - f_l \left(1 \pm f_x\right) \left(1 \pm f_y\right)\right) \delta(\ldots)$$

Equilibrium and detailed balance

• Standard thermodynamic arguments give the equilibrium distribution:

$$f_{eq}(r,k,N,\sigma) = \frac{1}{e^{\beta E} \mp 1}$$

• For given external momentum, all states with same length have the same probability:

$$f_{eq}(r,k,l) = \frac{\mathcal{N}(l)}{e^{\beta E} \mp 1}$$

Semiclassical strings: a random walk interpretation

The random walk interpretation allows us to conjecture the form of other interaction rates:

Non-trivial check: detailed balance must be satisfied *in every interaction* by an equilibrium solution agreeing with the general case at high energies.