Conserved Currents at Infinite Distance in the Conformal Manifold

José Calderón Infante

Based on 2305.05693 with Florent Baume
String Phenomenology 2023, IBS Korea, 06/07/2023

The Swampland Distance Conjecture

The Swampland Distance Conjecture

The Swampland Distance Conjecture

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06] There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]

There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

Progress:

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

Lots of top-down evidence!

Progress:

- String theory flat space vacua:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
- AdS/CFT:
[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

Lots of top-down evidence!

- String theory flat space vacua:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
- AdS/CFT:

\author{

+ Bottom-up motivations
 [Hamada, Montero, Vafa, Valenzuela '21]
 [Stout '21+'22]
 [JC, Castellano, Herráez, Ibáñez '23]
}
[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

Lots of top-down evidence!

- String theory flat space vacua:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
- AdS/CFT:
[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
+ Bottom-up motivations
[Hamada, Montero, Vafa, Valenzuela '21]
[Stout '21+'22]
[JC, Castellano, Herráez, Ibáñez '23]
+ connections, pheno,

The Swampland Distance Conjecture

Parametrized by massless scalars

Swampland Distance Conjecture (SDC) [Ooguri, Vafa '06]
There is an infinite tower of states becoming light at infinitedistance points in moduli space:

$$
M_{\text {tower }} \sim e^{-\alpha_{t} D_{\phi}} \text { as } D_{\phi} \rightarrow \infty \quad\left(M_{P l}=1\right)
$$

- True for every geodesic exploring infinite distance
- Order one bounds on the exponential rates α_{t}

Lightest tower: [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22]
Species scale: [van de Heisteeg, Vafa, Wiesner, Wu '23] [JC, Castellano, Herráez, Ibáñez '23]
\rightarrow Talks by Alberto, Álvaro, Ben, Ignacio, Irene and Max

Progress:

Lots of top-down evidence!

- String theory flat space vacua:
[Grimm, Palti, Valenzuela '18] [Lee, Lerche, Weigand '18-'19]
+ many many more!
AdS/CFT:
[Baume, JCl '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]

```
+ Bottom-up motivations
    [Hamada, Montero, Vafa, Valenzuela '21]
    [Stout '21+'22]
    [JC, Castellano, Herráez, Ibáñez '23]
+ connections, pheno, ... ... ...
```


The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20]
How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance
Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

The CFT Distance Conjecture

[Baume, JCI '20] [Perlmutter, Rastelli, Vafa, Valenzuela '20] How does the SDC look like in AdS/CFT?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance
Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t}$

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor

\rightarrow Dynamical gravity in the bulk!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(l+d-2) \sim e^{-\alpha_{t}(t)}$
[Baume, JC '23]

Towards a CFT Distance Theorem:

Conformal perturbation theory + HS symmetry

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor

\rightarrow Dynamical gravity in the bulk!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t}$
[Baume, JC '23]

Towards a CFT Distance Theorem:

Conformal perturbation theory + HS symmetry

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor

\rightarrow Dynamical gravity in the bulk!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?
[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in $\mathrm{d}>2$
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
III. $\gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t)}$
[Baume, JC '23]

Towards a CFT Distance Theorem:

Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor

\rightarrow Dynamical gravity in the bulk!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?

[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
${ }^{\text {III. }} \gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{\ell}(t)}$

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!
[Baume, JC '23]

Towards a CFT Distance Theorem:

Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!

$$
\text { III. } \leftrightarrow \alpha_{\ell} \sim\left\langle K_{\ell-1} K_{\ell-1} \mathcal{O}\right\rangle_{\overparen{H S}} \neq 0
$$

Evaluated at HS point!

Towards a CFT Distance Theorem

Can we prove this using CFT techniques?

[Perlmutter, Rastelli, Vafa, Valenzuela '20]
CFT Distance Conjecture:
Conformal manifold of local CFT in d>2
I. HS point \longrightarrow Infinite distance
II. Infinite distance \longrightarrow HS point
${ }^{\text {III. }} \gamma_{\ell}=\Delta_{\ell}-(\ell+d-2) \sim e^{-\alpha_{t}(t}$

Zamolodchikov distance

Local CFT: Posses energy-momentum tensor
\rightarrow Dynamical gravity in the bulk!
[Baume, JC '23]

Towards a CFT Distance Theorem:

Conformal perturbation theory + HS symmetry

I. Established!

II. Finite vs infinite distance criterion!

$$
\text { III. } \leftrightarrow \alpha_{\ell} \sim\left\langle K_{\ell-1} K_{\ell-1} \mathcal{O}\right\rangle_{H S S} \neq 0
$$

Evaluated at HS point!
No extra assumption, e.g., no supersymmetry + existence of energy-momentum is crucial!

Sketch of the Proof

Sketch of the Proof

Conformal perturbation theory

Sketch of the Proof

Conformal perturbation theory
 $\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$

Sketch of the Proof

Conformal perturbation theory
 $\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \widehat{O}\right\rangle_{t}$

Sketch of the Proof

$$
\begin{gathered}
\text { Conformal perturbation theory } \\
\begin{array}{c}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t} \\
\downarrow \gamma_{\ell}=-C_{J J O}(t) \delta t
\end{array}
\end{gathered}
$$

Sketch of the Proof

$$
\begin{gathered}
\text { Conformal perturbation theory } \\
\begin{array}{c}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t} \\
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t \\
\downarrow \\
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
\end{array}
\end{gathered}
$$

Sketch of the Proof

$$
\begin{gathered}
\text { Conformal perturbation theory } \\
\begin{array}{c}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t} \\
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t \\
\downarrow \\
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
\end{array}
\end{gathered}
$$

Sketch of the Proof

$$
\begin{gathered}
\text { Conformal perturbation theory } \\
\begin{array}{c}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \Theta\right\rangle_{t} \\
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t \\
\frac{d \gamma_{\ell}}{d t}=-C_{J J(0)}^{\text {Trajectory! }}
\end{array}
\end{gathered}
$$

Sketch of the Proof

Conformal perturbation theory

$$
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \widehat{O}\right\rangle_{t}
$$

$$
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t
$$

Zamolodchikov distance!

$$
\frac{d \gamma_{l}}{d t}=-C_{J \circlearrowleft \bigcirc}
$$

(given $\langle\mathcal{O} \mathcal{O}\rangle \sim 1$)

Sketch of the Proof

(Weakly-broken) HS symmetry

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
C_{J J \mathscr{O}} \simeq C_{J J O}^{H S}+C_{J K \mathscr{O}}^{H S} g+C_{K K \mathscr{O}}^{H S} g^{2}+\cdots
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
C_{J J \mathscr{O}} \simeq C_{J J O}^{H S}+C_{J K \mathscr{O}}^{H S} g+C_{K K \mathscr{O}}^{H S} g^{2}+\cdots
$$

Essentially, as $g \rightarrow 0$:
$\partial \cdot\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle=g\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
C_{J J O} \simeq C_{J J O}^{H S}+C_{J K O}^{H S} g+C_{K K O}^{H S} g^{2}+\cdots
$$

$$
\text { Essentially, as } g \rightarrow 0
$$

$$
\partial \cdot \frac{\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle}{C_{J J O}}=g \frac{\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle}{C_{J K O}}
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
C_{J J O} \simeq C_{J J O}^{H S}+C_{J K O}^{H S} g+C_{K K O}^{H S} g^{2}+\cdots
$$

$$
\text { Essentially, as } g \rightarrow 0:
$$

$$
\partial \cdot \frac{\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle}{C_{J J O}}=g \frac{\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle}{C_{J K O}}
$$

A bit more complicated than this...
\rightarrow More details in [Baume, JC '23]

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
C_{J J O} \simeq C_{J J O}^{H S}+C_{J K O}^{H S} g+C_{K K O}^{H S} g^{2}+\cdots
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

Sketch of the Proof

(Weakly-broken) HS symmetry

$$
\gamma_{\ell} \sim g^{2}
$$

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

Sketch of the Proof

Conformal perturbation theory

$\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t}$
$\delta \gamma_{\ell}=-C_{J J O}(t) \delta t$

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \odot}
$$

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$$
\gamma_{\ell} \sim g^{2}
$$

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

Sketch of the Proof

Conformal perturbation theory

$$
\begin{gathered}
\delta\left\langle J_{\ell} J_{\ell}\right\rangle_{t}=\delta t \int\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle_{t} \\
\delta \gamma_{\ell}=-C_{J J O}(t) \delta t \\
\downarrow \\
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
\end{gathered}
$$

(Weakly-broken) HS symmetry

$$
\partial \cdot J_{\ell}=g K_{\ell-1}
$$

$C_{J J O} \simeq \underset{H S}{C H O}+C_{J K O}^{H S} g+C_{K K O}^{H S} g^{2}+\cdots$

$$
\gamma_{\ell} \sim g^{2}
$$

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

Towards a CFT Distance Theorem

CFT Distance Conjecture

Towards a CFT Distance Theorem

CFT Distance Conjecture

I. HS point \longrightarrow Infinite distance

Towards a CFT Distance Theorem

CFT Distance Conjecture

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
$$

$C_{J J O} \lesssim \gamma_{\ell}$ as $\gamma_{\ell} \rightarrow 0$
(Weakly-broken) HS symmetry

Towards a CFT Distance Theorem

CFT Distance Conjecture

II. Infinite distance \longrightarrow HS point

Towards a CFT Distance Theorem

I. HS point \longrightarrow Infinite distance
Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
$$

\oplus

CFT Distance Conjecture

II. Infinite distance \longrightarrow HS point

No HS symmetry
\downarrow ?
$\exists \mathcal{O}: C_{\text {JJO }} \neq 0$

Towards a CFT Distance Theorem

CFT Distance Conjecture

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \mathcal{O}}
$$

$C_{J J O} \lesssim \gamma_{\ell}$ as $\gamma_{\ell} \rightarrow 0$
(Weakly-broken) HS symmetry
II. Infinite distance \longrightarrow HS point

No HS symmetry

$\exists \mathcal{O}: C_{J J O} \neq 0$
CFT Distance $\boldsymbol{\|}$ Sufficient but Criterion not necessary

Finite distance

Towards a CFT Distance Theorem

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \mathcal{O}}
$$

$C_{J J O} \lesssim \gamma_{\ell}$ as $\gamma_{\ell} \rightarrow 0$
(Weakly-broken) HS symmetry

CFT Distance Conjecture

II. Infinite distance \longrightarrow HS point

No HS symmetry

$\exists \mathcal{O}: C_{J J O} \neq 0$
CFT Distance $\sqrt{\text { I }}$ Sufficient but Criterion not necessary

Finite distance
III. $\gamma_{\ell} \sim e^{-\alpha_{\ell} t}$

Towards a CFT Distance Theorem

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \mathcal{O}}
$$

\oplus

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

(Weakly-broken) HS symmetry

CFT Distance Conjecture

II. Infinite distance \longrightarrow HS point

No HS symmetry

$\exists \mathcal{O}: C_{J J \mathcal{O}} \neq 0$
CFT Distance $\sqrt{\|}$ Sufficient but Criterion \quad not necessary

Finite distance
III. $\gamma_{\ell} \sim e^{-\alpha_{\ell} t}$
$\exists \mathcal{O}: C_{K K \mathcal{O}}^{H S} \neq 0$?

Towards a CFT Distance Theorem

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J \mathcal{O}}
$$

\oplus

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

(Weakly-broken) HS symmetry

CFT Distance Conjecture

II. Infinite distance \longrightarrow HS point

No HS symmetry

$\exists \mathcal{O}: C_{J J O} \neq 0$

CFT Distance I Sufficient but Criterion not necessary

Finite distance
III. $\gamma_{\ell} \sim e^{-\alpha_{\ell} t}$
$\exists \mathcal{O}: C_{K K O}^{H S} \neq 0$
$\frac{d \gamma_{\ell}}{d t} \simeq-C_{K K O}^{H S} \gamma_{\ell}$ as $\gamma_{\ell} \rightarrow 0$
Conformal perturbation theory \oplus
(Weakly-broken) HS symmetry

Towards a CFT Distance Theorem

CFT Distance Conjecture

I. HS point \longrightarrow Infinite distance

Conformal perturbation theory

$$
\frac{d \gamma_{\ell}}{d t}=-C_{J J O}
$$

\oplus

$$
C_{J J O} \lesssim \gamma_{\ell} \text { as } \gamma_{\ell} \rightarrow 0
$$

(Weakly-broken) HS symmetry
II. Infinite distance \longrightarrow HS point

No HS symmetry

$\exists \mathcal{O}: C_{J J O} \neq 0$

CFT Distance
 Sufficient but Criterion not necessary

Finite distance
III. $\gamma_{\ell} \sim e^{-\alpha_{\ell} t}$
$\exists \mathcal{O}: C_{K K O}^{H S} \neq 0$

$\frac{d \gamma_{\ell}}{d t} \simeq-C_{K K O}^{H S} \gamma_{\ell}$ as $\gamma_{\ell} \rightarrow 0$
Conformal perturbation theory \oplus
(Weakly-broken) HS symmetry

Thank you for your attention!

Backup slides

Conformal Perturbation Theory for HS operators

- Deform the theory with an operator: $\mathscr{L}_{t+\delta t}=\mathscr{L}_{t}+\delta t \mathcal{O}$

$$
\rightarrow \delta\left\langle J_{t} J_{\ell}\right\rangle=\delta t \int d^{d} y\left\langle J_{t} J_{\ell} \mathcal{O}(y)\right\rangle_{\text {reg }}+\mathcal{O}\left(\delta t^{2}\right)
$$

- \mathcal{O} marginal operator \longrightarrow Theory remains conformal
$\rightarrow \delta\left\langle J_{\ell} J_{\ell}\right\rangle=-\frac{H_{12}^{\ell}}{|x|^{2 \Delta_{\ell}-2 \ell}} 2 \delta \delta \Delta_{\ell} \log |x|$

Shift in conformal dimension linked to log divergences!

- Conformal structures (see e.g. [Costa, Penedones, Poland, Rychkov '11])

$$
\begin{gathered}
\rightarrow\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle=\sum_{n=0}^{\ell} C_{J J O}^{n} \Theta_{n}+1 \text { conformal structures } C_{J J O}=\sum_{n=0}^{\ell} w_{n} C_{J J O}^{n} \\
\delta \Delta_{\ell}=-\delta t C_{J J O}+\mathcal{O}\left(\delta t^{2}\right) \rightarrow \frac{d \Delta_{\ell}}{d t}=-C_{J J O} \quad \begin{array}{l}
\text { Valid everywhere in the } \\
\text { conformal manifold }
\end{array}
\end{gathered}
$$

Distances from Conformal Perturbation Theory

$$
\frac{d \Delta_{\ell}}{d t}=-C_{J J O}{ }^{C_{J J \Theta}} \Delta_{\ell}(t){ }^{\text {CFT Distance }} \begin{gathered}
\text { Conjecture }
\end{gathered}
$$

Two important questions:
What is the meaning of t ?

1. \mathcal{O} defines a direction in $\mathscr{M}_{C F T} \longrightarrow \mathcal{O}(t)$ defines a trajectory
2. $t+\delta t$ represents how we move $\longrightarrow t$ is a parameter of the trajectory

3. Take $\langle\mathcal{O} \mathcal{O}\rangle \sim 1 \longrightarrow d s^{2} \sim\langle\mathcal{O O}\rangle d t^{2} \sim d t^{2} \longrightarrow t$ is the distance along the trajectory!

- How do we learn about $C_{J J O}$?

Usually: CPT for $\langle J J O\rangle \longrightarrow \begin{aligned} & \text { Complicated equations involving all } \\ & \text { spectrum of operators and conformal blocks }\end{aligned}$ (See e.g. [Behan '18])
Here: Something different! In particular, weakly-broken HS symmetry

A CFT Distance Criterion

$$
\frac{d \Delta_{\ell}}{d t}=-C_{J J O}{ }^{C_{J J Q}} \Delta_{\ell}(t){ }^{\text {CFT Distance }} \begin{gathered}
\text { Conjecture }
\end{gathered}
$$

Consider a point with $\Delta_{\ell}=\Delta_{\ell}^{*}$ and $\Delta_{\ell}(t)$ invertible in a neighbourhood: $C_{J J O}(t) \longrightarrow C_{J J O}\left(\Delta_{\ell}\right)$

$$
\begin{aligned}
& \text { Take parametrization: } C_{J J O} \propto\left(\Delta_{\ell}-\Delta_{\ell}^{*}\right)^{a+1} \quad a \in \mathbb{R} \\
& \rightarrow t \propto\left(\Delta_{\ell}-\Delta_{\ell}^{*}\right)^{-a}<\begin{array}{l}
\text { Finite distance } \longleftrightarrow a<0 \\
\text { Infinite distance } \longleftrightarrow a \geq 0
\end{array}
\end{aligned}
$$

CFT Distance criterion:

$$
\begin{aligned}
& \text { Finite distance } \longleftrightarrow \exists \mathcal{O} \text { (marginal operator) such that } a<0 \\
& \text { Infinite distance } \longleftrightarrow a \geq 0 \quad \forall \mathcal{O} \text { (marginal operator) }
\end{aligned}
$$

Notice! Any point with $C_{J J O} \neq 0$ any automatically at finite distance!

JJO Correlator at HS Points

HS point \rightarrow Ward identities

At generic points!

$$
\partial \cdot J_{\ell}=0+\text { (contact terms) }
$$

$\bullet\left\langle\partial J_{\ell} J_{\ell} \mathcal{O}\right\rangle=0 \rightarrow$ Recursive relation among all $C_{J J O}^{n} \rightarrow C_{J J O}^{n}=v^{n} C_{J J O}^{\ell}$
$\rightarrow C_{J J O}^{H S}=C_{J J O}^{\ell} \sum_{n=0}^{\ell} w_{n} v^{n}=0$? No:(... Need to work a bit harder

- Integrated Ward identity!

Twist conservation: $\Delta_{s}-s=d-2$

1. Define conserved charges: $Q_{\ell}=\int_{S} J_{\ell} \rightarrow\left[Q_{\ell}, J_{\ell}\right] \sim \sum_{s} J_{s}$
2. Use: $\int_{S}\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle \propto\left\langle\left[Q_{\ell}, J_{\ell}\right] \widehat{O}\right\rangle$

JJO Correlator at HS Points

$$
\frac{\text { HS point } \rightarrow \text { Ward identities }}{\partial \cdot J_{\ell}=0+\text { (contact terms) }}
$$

Surface integral

JJO Correlator at HS Points

HS point \rightarrow Ward identities
$\partial \cdot J_{\ell}=0+$ (contact terms)

Surface integral + Stokes theorem

- 0

JJO Correlator at HS Points

HS point \rightarrow Ward identities

$$
\partial \cdot J_{\ell}=0+(\text { contact terms })
$$

Surface integral + Stokes theorem + Ward identity

JJO Correlator at HS Points

HS point \rightarrow Ward identities
$$
\partial \cdot J_{e}=0+\text { (contact terms) }
$$
\section*{Surface integral + Stokes theorem + Ward identity}

$\left[Q_{\ell}, J_{\ell}\right]$

JJO Correlator at HS Points

HS point \rightarrow Ward identities

$$
\partial \cdot J_{l}=0+\text { (contact terms) }
$$

At generic points!
$C_{J J O}^{n}=v^{n} C_{J J O}^{\ell}$
$\rightarrow C_{J J O}^{H S}=C_{J J O}^{\ell} \sum_{n=0}^{\ell} w_{n} v^{n}=0$? No:(... Need to work a bit harder

- Integrated Ward identity!

1. Define conserved charges: $Q_{\ell}=\int_{S} J_{\ell} \rightarrow\left[Q_{\ell}, J_{\ell}\right] \sim \sum_{s} J_{s} \quad \frac{\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle=0 \forall J_{\ell}, \mathcal{O}}{4}$
2. Use: $\int_{S}\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle \propto\left\langle\left[Q_{\ell}, J_{\ell}\right] \mathcal{O}\right\rangle \rightarrow \underset{J^{\prime}}{ } C_{J J \mathcal{O}}^{\ell} \propto \sum_{\ell}\left\langle J_{\ell} \mathcal{O}\right\rangle=0 \rightarrow C_{J J \mathcal{O}}^{\ell}=0$

JKO Correlator at HS Points

HS point \rightarrow Ward identities

$$
\partial \cdot J_{l}=0+(\text { contact terms })
$$

At generic points!
$\bullet\left\langle\partial J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle=0 \rightarrow$ Recursive relation among all $C_{J K O}^{n} \rightarrow C_{J K \Theta}^{n}=v^{n} C_{J K O}^{\ell}$
$\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle: \ell$ equations for $\ell+1$ variables $\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle: \ell$ equations for ℓ variables \qquad Enough? No:(...Need to work a bit harder

- Integrated Ward identity!

Twist conservation: $\Delta_{s}-s=d$

1. Define conserved charges:

$$
Q_{\ell}=\int_{S} J_{\ell} \rightarrow\left[Q_{\ell}, K_{\ell-1}\right] \sim \sum_{s} \widehat{K_{s}}
$$

2. Use: $\int_{S}\left\langle K_{\ell-1} J_{\ell} \mathcal{O}\right\rangle \propto\left\langle\left[Q_{\ell}, K_{\ell-1}\right]\right.$

JKO Correlator at HS Points

HS point \rightarrow Ward identities

$$
\partial \cdot J_{l}=0+\text { (contact terms) }
$$

At generic points!
$\bullet\left\langle\partial J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle=0 \rightarrow$ Recursive relation among all $C_{J K O}^{n} \rightarrow C_{J K O}^{n}=v^{n} C_{J K O}^{\ell}$
$\left\langle J_{\ell} J_{\ell} \mathcal{O}\right\rangle: \ell$ equations for $\ell+1$ variables
$\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle: \ell$ equations for ℓ variables Enough? No:(...Need to work a bit harder

- Charge conservation identity! [Maldacena, Zhiboedov '11]

Involves presence of energy-momentum tensor \rightarrow Dynamical gravity in the bulk!

$$
\left\langle\left[Q_{\ell}, T_{2} K_{\ell-1} \mathcal{O}\right]\right\rangle=0 \rightarrow \overparen{\beta}\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle+\cdots=0 \quad \forall x_{i} \quad \text { For all positions of operators! }
$$

Non-vanishing! [Maldacena, Zhiboedov '11] Goal achieved for $\ell=4$!
Goal:
Show that only consistent solution is such that this contribution vanishes

$$
\rightarrow\left\langle J_{\ell} K_{\ell-1} \mathcal{O}\right\rangle=0 \quad \forall J_{\ell}, K_{\ell-1}, \mathcal{O}
$$

Enough! Any HS
point contains J_{4}

