(More on)

Running Decompactifications, Sliding Towers, and the Distance Conjecture

based on 2306.16440 [hep-th], with Muldrow Etheredge, Ben Heidenreich, Jacob McNamara, Tom Rudelius and Irene Valenzuela

Ignacio Ruiz, String Phenomenology 2023, July 6, Institute for Basic Science, Daejeon

(More on)

Running Decompactifications, Sliding Towers, [Recall Irene Valenzuela talk!] and the Distance Conjecture

based on 2306.16440 [hep-th], with Muldrow Etheredge, Ben Heidenreich, Jacob McNamara, Tom Rudelius and Irene Valenzuela

Ignacio Ruiz, String Phenomenology 2023, July 6, Institute for Basic Science, Daejeon

1. (Quick) Review of the Distance Conjecture and Convex Hulls

Swampland Distance Conjecture [Ooguri, Vafa, '07]

Given $(\mathcal{M}, \mathsf{G})$ the moduli space of a QG theory in $d \geq 4$, and, $p_0 \in \mathcal{M}$ as we move asymptotically far away in \mathcal{M} , there exists an infinite tower of light particles scaling as

$$m(p) \sim m(p_0) \exp\{-\alpha d(p_0, p)\}\$$

with $d(p_0, p)$ (shortest) geodesic distance and $\alpha > 0$ an $\mathcal{O}(1)$ number.

Swampland Distance Conjecture [Ooguri, Vafa, '07]

Given $(\mathcal{M}, \mathsf{G})$ the moduli space of a QG theory in $d \geq 4$, and, $p_0 \in \mathcal{M}$ as we move asymptotically far away in \mathcal{M} , there exists an infinite tower of light particles scaling as

$$m(p) \sim m(p_0) \exp\{-\alpha d(p_0, p)\}\$$

with $d(p_0, p)$ (shortest) geodesic distance and $\alpha > 0$ an $\mathcal{O}(1)$ number.

We have different refinements on it:

Emergent String Conjecture: Every of such infinite-distance limit in M is either a emergent string limit or a decompactification limit. [Lee, Lerche, Weigand '19]

Sharpened Distance Conjecture: The Distance Conjecture requires [Etheredge, Heidenreich, Kaya, Qiu, Rudelius '22] $\alpha \geq \frac{1}{\sqrt{d-2}}$

Scalar Weak Gravity Conjecture [Palti,'17]

In a QG theory with massless scalar fields, at every point in \mathcal{M} there exists a state with sufficiently large scalar charge-to-mass ratio

$$\zeta_i \equiv -\partial_{\phi^i} \log m$$

with $\|\vec{\zeta}\| \ge \alpha_{\min}$ and α_{\min} a $\mathcal{O}(1)$ constant.

Scalar Weak Gravity Conjecture [Palti,'17]

In a QG theory with massless scalar fields, at every point in \mathcal{M} there exists a state with sufficiently large scalar charge-to-mass ratio

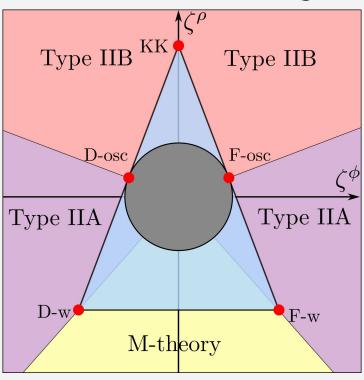
$$\zeta_i \equiv -\partial_{\phi^i} \log m$$

with $\|\vec{\zeta}\| \ge \alpha_{\min}$ and α_{\min} a $\mathcal{O}(1)$ constant.

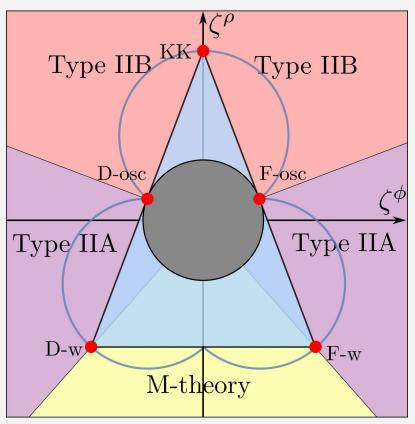
We can further constrain this:

Convex Hull SWGC: In the SWGC, the convex hull generated by the $\{\zeta_I\}_I$ vectors of all massive states must contain a ball of radius α_{\min} centered at the origin. [Calderón-Infante, Uranga, Valenzuela '21]

CHSWGC & SDC: IIB String Theory at S^1



CHSWGC & SDC: IIB String Theory at S^1



We can obtain the decay rate along some direction $\hat{\tau}$ as

$$\alpha = \vec{\zeta} \cdot \hat{\tau}$$

[Recall Ben Heidenreich talk!]

2. A trickier case: Heterotic String Theory in 9d

The moduli space of 9d Heterotic String Theory

After compactiftying heterotic string theory on S^1 we obtain a 18-dimensional moduli space:

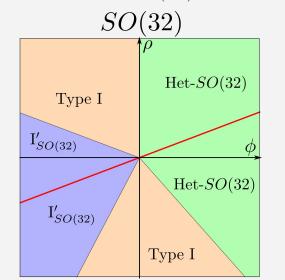
$$\mathcal{M} = \hat{\mathcal{M}} \times \mathbb{R}, \quad \hat{\mathcal{M}} = SO(17, 1; \mathbb{Z}) \backslash SO(17, 1) / SO(17),$$

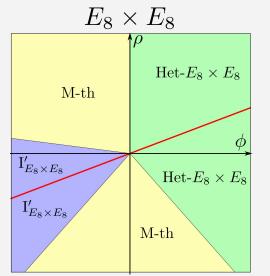
The moduli space of 9d Heterotic String Theory

After compactiftying heterotic string theory on S^1 we obtain a 18-dimensional moduli space:

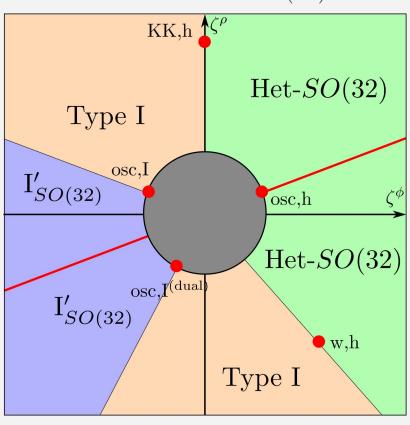
$$\mathcal{M} = \hat{\mathcal{M}} \times \mathbb{R}, \quad \hat{\mathcal{M}} = SO(17, 1; \mathbb{Z}) \backslash SO(17, 1) / SO(17),$$

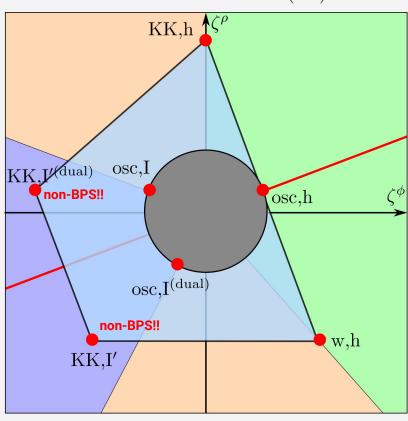
We will be interested in the SO(32) and $E_8 \times E_8$ slides of moduli space:

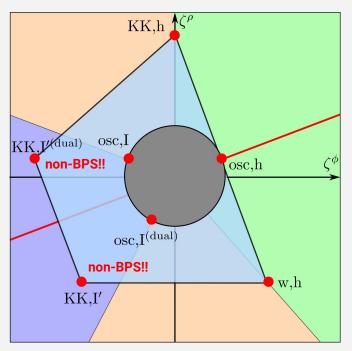


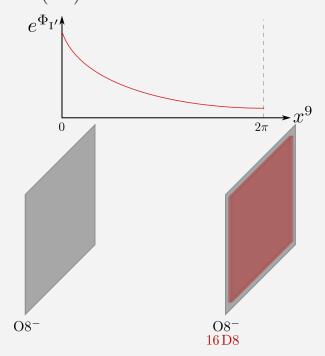


[Aharony, Komargodski, Patir '07]

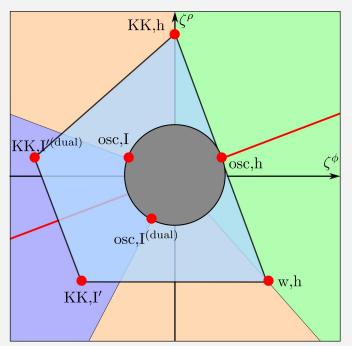


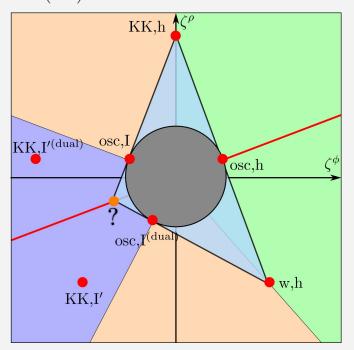






[Polchinski, Witten '95]





So... How do we solve this?

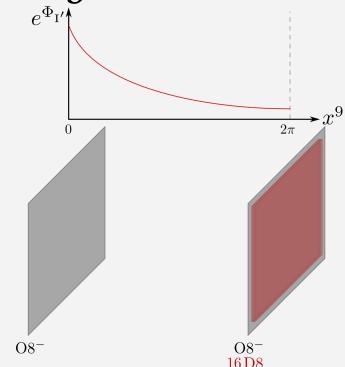
Resolution of the puzzle:

Decompactification to a running solution

The running of the string coupling between the O8 induces a warped metric $g_{MN} = \Omega(x^9)^2 \eta_{MN}$:

$$\Omega(x^9) = Cz(x^9)^{-1/6}
e^{\Phi(x^9)} = z(x^9)^{-5/6}
 z(x^9) \propto C(B + 8x^9)$$

For $B < \infty$ limits we decompactify to a running solution!



Resolution of the puzzle:

Decompactification to a running solution

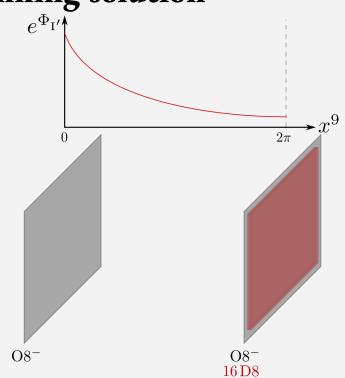
The running of the string coupling between the O8 induces a warped metric $g_{MN} = \Omega(x^9)^2 \eta_{MN}$:

$$\Omega(x^9) = Cz(x^9)^{-1/6}
e^{\Phi(x^9)} = z(x^9)^{-5/6}
 z(x^9) \propto C(B + 8x^9)$$

For $B < \infty$ limits we decompactify to a running solution!

This results in a non-trivial moduli dependence for the non-BPS KK modes:

$$m_{\text{KK, I'}} = \left(\int_0^{2\pi} \mathrm{d}x^9 \hat{\Omega}^8 e^{-2\Phi_{\text{I'}}} \right)^{-\frac{1}{7}} M_{\text{Pl;9}}$$



Resolution of the puzzle: **Decompactification to a running solution**

While flat, the moduli space metric is a complicated function of the moduli. Both kinetic and Laplacian terms contribute from the Ricci scalar reduction:

$$\mathsf{G}^{SO(32)} \sim \begin{pmatrix} B^{-2} & B^{-1}C^{-1} \\ B^{-1}C^{-1} & C^{-2} \end{pmatrix} \qquad \mathsf{G}^{SO(32)} \sim \begin{pmatrix} B^{-2/3} & C^{-1} \\ C^{-1} & C^{-2} \end{pmatrix}$$

$$(B \gg 1) \qquad (B \ll 1)$$

Resolution of the puzzle: **Decompactification to a running solution**

While flat, the moduli space metric is a complicated function of the moduli. Both kinetic and Laplacian terms contribute from the Ricci scalar reduction:

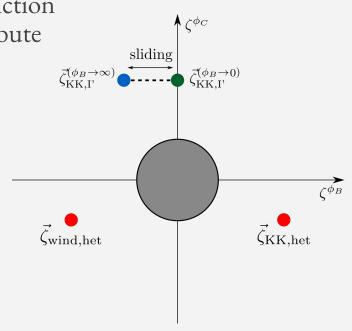
$$\mathsf{G}^{SO(32)} \sim \begin{pmatrix} B^{-2} & B^{-1}C^{-1} \\ B^{-1}C^{-1} & C^{-2} \end{pmatrix} \qquad \mathsf{G}^{SO(32)} \sim \begin{pmatrix} B^{-2/3} & C^{-1} \\ C^{-1} & C^{-2} \end{pmatrix}$$

$$(B \gg 1) \qquad \qquad (B \ll 1)$$

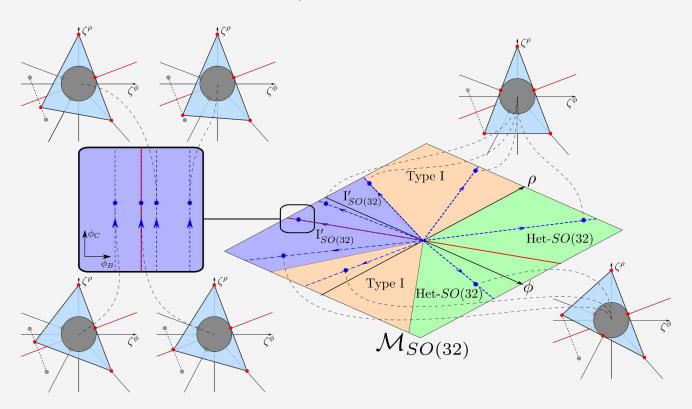
We are able to obtain flat coordinates ϕ_B and ϕ_C :

$$\vec{\zeta}_{\text{KK},I'} = \left(-\frac{3}{2} \left[\frac{2}{\sqrt{1 - e^{-4\phi_B}}} + 1 \right]^{-1}, \frac{5}{2\sqrt{7}} \right)$$

Slides depending on distance to self-dual line!!



Resolution of the puzzle: Sliding of $\vec{\zeta}_{KK,\ I'}$ along moduli space

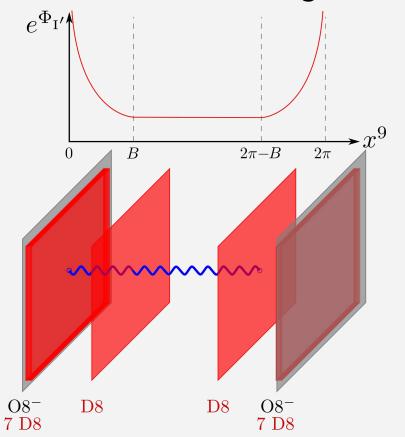


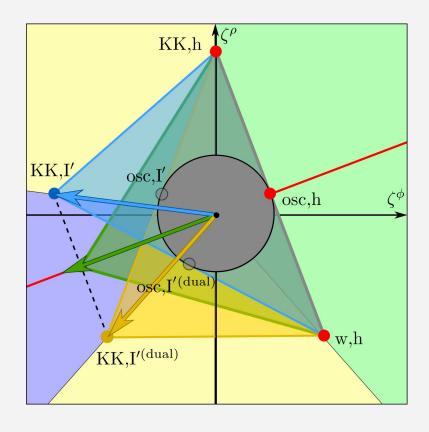
The analogous case: $E_8 \times E_8$ slice



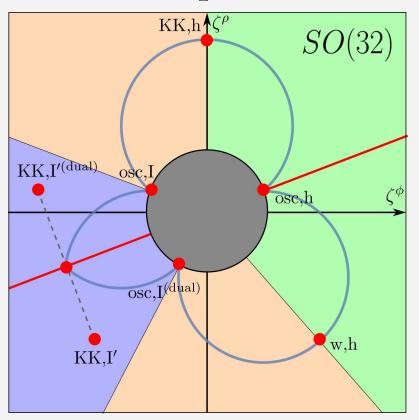
[Polchinski, Witten '95;
Aharony, Komargodski, Patir '07]

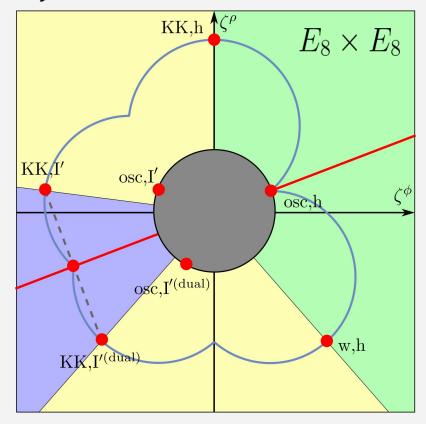
The analogous case: $E_8 \times E_8$ slice



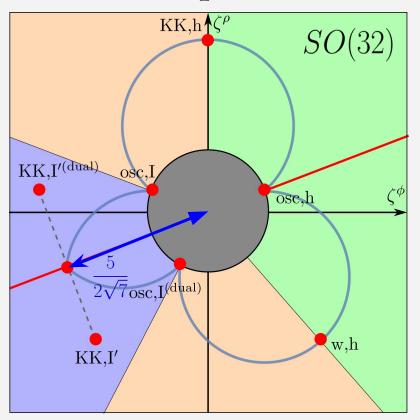


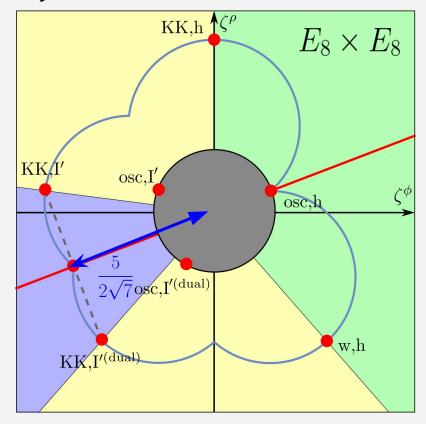
Sharpened distance conjecture is fulfilled





Sharpened distance conjecture is fulfilled





3. Conclusions

What have we obtained?

- We are able to explicitly compute **non-BPS KK** mass and exponential rate as function of the moduli space.
- The Emergent String Conjecture checked BUT important caveat:
 - **Decompactification** can be to a **running solution** → Changes in exponential rate
- The Sharpened Distance Conjecture and Convex Hull Scalar Weak Gravity Conjecture are fulfilled in a non-trivial way: Sliding/jumping is needed!
 - Also in more slides: $SO(16) \times SO(16)$, CHL string, AOA and AOB, second slice of SO(32), new theories from [Montero, Parra de Freitas '19] \rightarrow No new behavior

Shortcomings and future directions

- Axions are not taken into consideration:
 - Relevant for CHWGC and phenomenology!
- Generality of sliding: How does it extend to other dimensions and SUSY?
 - Universal features? Can we classify possibilities?

[Etheredge, Heidenreich, McNamara,

[Recall Ben Heidenreich talk!]

Already working in cases with more moduli and d<9!</p>

[Etheredge, Heidenreich, McNamara, Rudelius, IR, Valenzuela (to appear)]

Shortcomings and future directions

- Axions are not taken into consideration:
 - Relevant for CHWGC and phenomenology!
- Generality of sliding: How does it extend to other dimensions and SUSY?
 - Universal features? Can we classify possibilities?

[Recall Ben Heidenreich talk!]

Already working in cases with more moduli and d<9!

[Etheredge, Heidenreich, McNamara, Rudelius, IR, Valenzuela (to appear)]

In conclusion!

[See also Timo Weigand and Rafael Álvarez-García talks!]

Decompactification to running solutions and non-BPS towers are important for Swampland!

We are entering Swampland Precision Era!

Exciting problem to work in!

Thanks for the attention!

Thanks for the attention!

More Coming Soon

STAY TUNED!

(questions welcomed)

Backup: Moduli space metric from Ricci reduction

9-dimensional Einstein metric:

$$\mathsf{g}_{\mu\nu} = \left(\frac{r}{r_0}\right)^{2/7} r_0^{1/4} \eta_{\mu\nu} \quad \text{with} \quad r = \int_0^{2\pi} \mathrm{d}x^9 \Omega^8 e^{-2\Phi_{\mathrm{I}'}}$$

We want
$$S_{\mathrm{I'}} \supset \frac{1}{2\kappa_{10\mathrm{I'}}^2} \int \mathrm{d}^{10}x \sqrt{-\tilde{g}} \left\{ R_{\tilde{g}} - \frac{1}{2} \left(\partial \hat{\Phi}_{\mathrm{I'}} \right)^2 \right\} = \frac{1}{2\kappa_{0\mathrm{I'}}^2} \int \mathrm{d}^9 x \sqrt{-\mathsf{g}} \left\{ R_{\mathsf{g}} - \mathsf{G}_{ab} \partial_\mu \varphi^a \partial^\mu \varphi^b \right\}$$

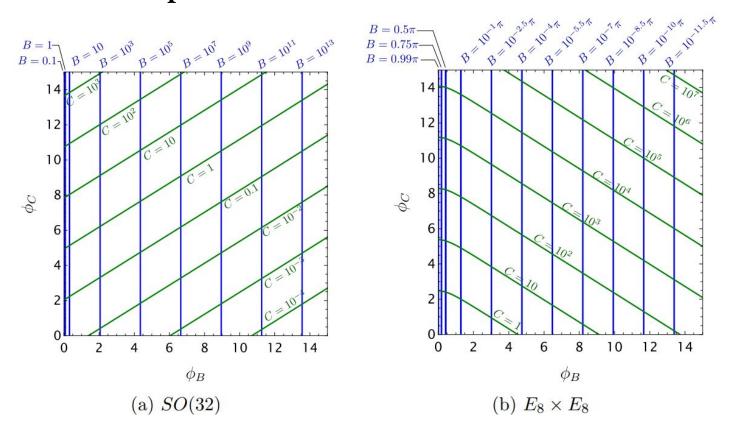
so that

$$\mathsf{G}_{ab}\partial_{\mu}\varphi^{a}\partial^{\mu}\varphi^{b} = \frac{1}{r}\int_{0}^{2\pi}\mathrm{d}x^{9}\Omega^{8}e^{-2\hat{\Phi}_{\mathbf{I}'}}\left\{\frac{7}{8}\left[\partial\log\left(\frac{\Omega^{8}e^{-2\hat{\Phi}_{\mathbf{I}'}}r_{0}^{1/7}}{r^{8/7}}\right)\right]^{2} + \frac{1}{2}(\partial\hat{\Phi}_{\mathbf{I}'})^{2}\right\} + \delta_{\mathrm{kin}}^{(2)},$$

After integrating by parts and regularizing, $\delta_{\text{kin}}^{(2)} = \hat{\delta} - \frac{1}{\sqrt{-g}} \lim_{B \to \infty, 0} \left[\sqrt{-g} \hat{\delta} \right]$

$$\hat{\delta} = -\frac{2}{r} \int_0^{2\pi} dx^9 \Omega^8 e^{-2\hat{\Phi}_{I'}} \left\{ \left[\partial \log \left(\frac{\Omega^8 e^{-2\hat{\Phi}_{I'}} r_0^{1/7}}{r^{8/7}} \right) \right]^2 + \frac{1}{7} \partial_\mu \log \left(\frac{r}{r_0} \right) \partial^\mu \log \left(\frac{\Omega^8 e^{-2\hat{\Phi}_{I'}} r_0^{1/7}}{r^{8/7}} \right) \right\}$$

Backup: Coordinate curves in flat frame



Backup: Heterotic-Type I' Duality relations

Heterotic	SO(32)	$E_8 \times E_8$
$R_{ m h}$	$=\frac{\pi}{2^{1/4}}(\alpha_{\rm I'}')^{1/2}\left(\int_0^{2\pi}{\rm d}x^9\hat{\Omega}^2\right)^{-3/4}\left(\int_0^{2\pi}{\rm d}x^9\hat{\Omega}^8e^{-2\Phi_{\rm I'}}\right)^{-1/4}\left(\sum_{i=1}^{16}\left.\hat{\Omega}^5e^{-\Phi_{\rm I'}}\right _{x^9=x_i^9}\right)^{1/2}$	$\sqrt{2}(\alpha'_{I'})^{1/2} \left(\int_0^{2\pi-B} \mathrm{d} x^9 \hat{\Omega}^2 \right)^{3/4} \left(\int_0^{2\pi} \mathrm{d} x^9 \hat{\Omega}^8 e^{-2\Phi_{I'}} \right)^{-1} \left(\sum_{i=1}^{16} \hat{\Omega}^5 e^{-\Phi_{I'}} \Big _{x^9 = x_i^9} \right)^{5/4}$
$g_{ m h}$	$\frac{\sqrt{2}}{\pi} \left(\int_0^{2\pi} \mathrm{d} x^9 \hat{\Omega}^2 \right)^{3/2} \left(\int_0^{2\pi} \mathrm{d} x^9 \hat{\Omega}^8 e^{-2\Phi_{l'}} \right)^{-2} \left(\sum_{i=1}^{16} \hat{\Omega}^5 e^{-\Phi_{l'}} \Big _{x^9 = x_i^9} \right)^{-1/2}$	$\frac{2}{\pi} \left(\int_0^{2\pi - B} \mathrm{d} x^9 \hat{\Omega}^2 \right)^{1/2} \left(\int_0^{2\pi} \mathrm{d} x^9 \hat{\Omega}^8 e^{-2\Phi_{l'}} \right) \left(\sum_{i=1}^{16} \hat{\Omega}^5 e^{-\Phi_{l'}} \Big _{x^9 = x_i^9} \right)^{-3/2}$
Extra	$m_{\rm KK,h} = R_{\rm h}^{-1}$	$m_{\rm w,h} = \frac{R_{\rm h}}{2\pi\alpha'_{\rm h}} = \frac{D}{2\pi\alpha'_{I'}} 2\int_0^{2\pi-B} { m d}x^9 \Omega^2 = m_{\rm w,I'}$