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Vast Literature on their role in the Landscape, Swampland, & Beyond:
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Problematic:

= Statistical interpretation of couplings
* No sign of ensembles in top-down holography, e.g. AdS; x S°
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Holography of Narain Ensembles
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Holography of Narain Ensembles

Ang < CFTQ

Z ZBulk|T] = / dm|Zcpr|m; 7]

AdSS- moduli

geometries 1 space 1
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Emergent Ensemble Symmetries

Ang < CFTQ

Z ZBulk|T] = / dm|Zcpr|m; 7]

AdSs3 moduli

geometries space
After ensemble averaging -> global symmetries emerge that act on anyons

k] These can be unitary or anti-unitary & classical or quantum

L To have any hope, we need to break or gauge the symmetry
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Breaking Emergent Ensemble Symmetries

Theta functions furnish basis of wavefunctions for 3D Maxwell-Chern-Simons

Va7, §(A);m)
nP (7)n(7)

Arise from string compactifications on AdS; x M, —

v,

= Argue for duality: Topological limit of MCS & Irrational CFT
= Suggests a duality before ensemble averaging, and averaging is a
coarse-grained description

* Then additional terms in spectral decomposition bring us back to
UV completion



What did we learn?

Ensemble averaged theories can have global symmetries after averaging

There is a mathematically well-defined method to break these via the spectral
decomposition of theta functions

This seems to suggest a natural embedding in string compactifications:

 Ensemble averages sit as an effective description inside standard holography
* Similar to N=4 SYM story of ;

Large N, Large A <—> Large N, Ensemble Averaged

(A — o0) (N — o0)



What did we learn?

Ensemble averaged theories can have global symmetries after averaging

There is a mathematically well-defined method to break these via the spectral
decomposition of theta functions

This seems to suggest a natural embedding in string compactifications:

 Ensemble averages sit as an effective description inside standard holography
* Similar to N=4 SYM story of ;

Classical SUGRA <—> large N, Large A H Large N, Ensemble Averaged
of the Bulk

OSUGRA = O()\ — OO) = <(9>

(A — o0) (N — o0)



What did we learn?

Ensemble averaged theories can have global symmetries after averaging

There is a mathematically well-defined method to break these via the spectral

) decomposition of theta functions
This seems to suggest a natural embedding in string compactifications: C

 Ensemble averages sit as an effective description inside standard holography
* Similar to N=4 SYM story of ;

Classical SUGRA <—> large N, Large A H Large N, Ensemble Averaged
of the Bulk

Implications for wormhole physics:
= Wormholes -> Ensemble Averaged theories = coarse grained description

= Corrections -> deviation from average, return to QG. Interpret as half-wormholes?

¢

Akin to corrections in JT-SYK to restore factorization
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) decomposition of theta functions
This seems to suggest a natural embedding in string compactifications: C

 Ensemble averages sit as an effective description inside standard holography
* Similar to N=4 SYM story of ;

Classical SUGRA <—> large N, Large A H Large N, Ensemble Averaged
of the Bulk

Implications for wormhole physics:
= Wormholes -> Ensemble Averaged theories = coarse grained description

= Corrections -> deviation from average, return to QG. Interpret as half-wormholes?

Ongoing Work:
= General Orbifolded Narain CFTs -> alternative UV interpretation?

" Physics Interpretation of the Spectral Decomposition
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SNarain = Jd2U{GMNaaXMaaXN + BMNEabaaXMabXN}

e Compact Bosons:
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(X,g/]) - (Xlg’/’) +&l ¢&: Narain Vielbein
e Operators:
JM — oxM
JM = oxM
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OPE:
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Closure requires an infinite lattice of operators
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e Symmetries of a TQFT are automorphisms of its data
— permutations of the anyons D, that leave
TQFT data invariant modulo gauge transformations
(and maybe complex conjugation)

e TQFT data for Abelian TQFTs is completely determined
by finite Abelian group D and topological spins

e0-form Global Symmetries: Y1 : Dy — D

[Delmastro, Gomis,

Unitary
Yi(a x ) = Yi(a) x Yi(B)
0(Yi () = 0(a)
B(Yi(a), Y+(8)) = B(a, B)

Anti-Unitary
Y_(ax 3) =Y_(a) x Y_(B)
O(Y_(0)) = 0(0)*
B(Y-(a), Y-(B)) = B(a, B)"

Classical

Yi - 5cs = Scs

Quantum
Yy -Scs # Scs
but obey Ward Identities

Go := Aut(Dp, 0) =~ {Y1 e Z™"|QPQ £ Y QY: = Q}/ ~

e If P+ 0V representatives of [ Y], then the symmetry is quantum
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The Kraken:
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