

Heterotic Strings and Holomorphic Factorization

Hector Parra De Freitas (IPhT Saclay)

Based on [HPF, to appear]

and following recent work with B. Fraiman, M. Graña and S. Sethi.

Asymmetric Orbifolds: (of Het/T^d)

[de Boer+ '01]

Preserving 16 supercharges:

(e.g. CHL strings, Holonomy triples,...) done in [Fraiman, HPF '22]

Asymmetric Orbifolds: (of Het/T^d)

[de Boer+ '01]

Preserving 16 supercharges:

(e.g. CHL strings, Holonomy triples,...) done in [Fraiman, HPF '22]

Preserving 0 supercharges: (a la Scherk-Schwarz or e.g. E₈ string) = purpose of this work

Motivation: Explore the interplay of rank reduction and SUSY breaking.

• higher level current algebras

- Cosmological constant profiles
- Appearance of tachyons
 [cf. Graña's and Fraiman's talks]

[de Boer+ '01]

Preserving 16 supercharges:

(e.g. CHL strings, Holonomy triples,...) done in [Fraiman, HPF '22]

Preserving 0 supercharges: (a la Scherk-Schwarz or e.g. E₈ string) = purpose of this work

Motivation: Explore the interplay of rank reduction and SUSY breaking.

• higher level current algebras

- Cosmological constant profiles
- Appearance of tachyons
 [cf. Graña's and Fraiman's talks]

Strategy: Relate theories to 2D chiral CFTs with c = 24.

Supersymmetric case:

1. <u>Vanilla heterotic string</u>: Compactify on T8 and polarize Narain lattice Λ.

Supersymmetric case:

1. <u>Vanilla heterotic string</u>: Compactify on T8 and polarize Narain lattice Λ.

2. <u>CHL string:</u> (def: orbifold by exchange of E8's with half-shift on a circle)

Story repeats. Compactify on T7 and polarize Λ . Worldsheet factorizes at 17 points in moduli space of 2D theory.

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

Bosonic CFT with c = 24

~ classified in [Schellekens '92]

~ based on E8 lattice

There are 71 possible left-moving CFTs, arranged into **12 genera** according to underlying lattice [Hohn '17].

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

Bosonic CFT with c = 24 ~ classified in [Schellekens '92]

There are 71 possible left-moving CFTs, arranged into **12 genera** according to underlying lattice [Hohn '17].

Each genus, except for the monster, gives a moduli space with non-trivial decompactification limit to $D \ge 6$ [Fraiman, HPF '22]

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with c = 16.

2 Bosonic CFTs

Supersymmetric Heterotic

7 Fermionic CFTs

Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with c = 16.

2 Bosonic CFTs Supersymmetric Heterotic 7 Fermionic CFTs

Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.

Lesson: Should look for classification of chiral *fermionic* CFTs with c = 24.

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with c = 16.

2 Bosonic CFTs Supersymmetric Heterotic 7 Fermionic CFTs

Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.

Lesson: Should look for classification of chiral *fermionic* CFTs with c = 24.

Done recently in [Hohn, Möller '23] !

• 969 chiral fermionic 2D CFTs with c = 24.

- 969 chiral fermionic 2D CFTs with c = 24.
- Obtained as orbifolds of bosonic CFTs.

- 969 chiral fermionic 2D CFTs with c = 24.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera,
 2 coming from the monster CFT.

- 969 chiral fermionic 2D CFTs with c = 24.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera,
 2 coming from the monster CFT.

- 969 chiral fermionic 2D CFTs with c = 24.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera,
 2 coming from the monster CFT.

Labels indicate type of orbifold:

I, IIa and IIb = inner automorphism + $(-1)^F$ different kinds of shift vectors e.g. I means usual SS reduction IIa,b possible for rank reduced theories III = outer automorphism + $(-1)^F$ e.g. E_8 string.

Neighborhood Graph

Strategy:

1. Compute partition function of candidate non-supersymmetric string

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point
- 4. Compare left-moving partition function with data in [Hohn, Möller '23]

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point
- 4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

• **B**_{III}: E₈ string

(nothing too exciting...)

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point
- 4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- **B**_{III}: E₈ string
- **B**_I: SS reduction of CHL string

(nothing too exciting...)(Closest analog to usual non-susy)

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point
- 4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- **B**_{III}: E₈ string
- **B**_I: SS reduction of CHL string
- **B**_{IIb}: Orbifold Het/S1 by **CHL** x (-1)^F

(nothing too exciting...)
(Closest analog to usual non-susy)
(Studied in [Nakajima '23])

Strategy:

- 1. Compute partition function of candidate non-supersymmetric string
- 2. Compactify toroidally to 2D
- 3. Deform to holomorphic factorization point
- 4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- **B**_{III}: E₈ string
- **B**_I: SS reduction of CHL string
- **B**_{IIb}: Orbifold Het/S1 by **CHL** x (-1)^F
- B_{IIa} : SS reduction of E_8 string

(nothing too exciting...)
(Closest analog to usual non-susy)
(Studied in [Nakajima '23])
(A bit exotic, generic tachyon?)

Other theories: obtained along the same lines? Those of type I and IIb should be easy to get.

Other theories: obtained along the same lines? Those of type I and IIb should be easy to get.

Note: This predicts four 6D **non-supersymmetric islands** (no classical moduli apart from dilaton).

Are they tachyonic?

If not, what are the values of their cosmological constants?

Neighborhood Graph

Other theories: obtained along the same lines? Those of type I and IIb should be easy to get.

Note: This predicts four 6D **non-supersymmetric islands** (no classical moduli apart from dilaton).

Are they tachyonic?

If not, what are the values of their cosmological constants?

Might be useful in constructing nonsupersymmetric AdS3 vacua [Baykara+ '22] since the problem of minimizing the CC is bypassed.

Neighborhood Graph

Future work:

- 1. In supersymmetric case the 2D CFTs encode gauge symmetries of 6D counterparts. Does this occur here also?
- 2. Can we extend this picture to include Type II theories? In supersymmetric case this comes out naturally.
- 3. Are there relations among the spectra of the different theories? Is there a frozen singularity picture?

Thanks for you attention!