Heterotic Strings and Holomorphic Factorization

Hector Parra De Freitas (IPhT Saclay)

Based on [HPF, to appear]

and following recent work with B. Fraiman, M. Graña and S. Sethi.

Objective: Classify a family of heterotic strings in $\mathrm{D} \geq 6$.

Objective: Classify a family of heterotic strings in $\mathrm{D} \geq 6$.

Asymmetric Orbifolds:
(of Het/Td)

Objective: Classify a family of heterotic strings in $\mathrm{D} \geq 6$.
Preserving 16 supercharges:
(e.g. CHL strings, Holonomy triples,...) done in [Fraiman, HPF '22]
Asymmetric Orbifolds:
(of Het/Td)

Objective: Classify a family of heterotic strings in $\mathrm{D} \geq 6$.
[de Boer+ '01]

Motivation: Explore the interplay of rank reduction and SUSY breaking.

- non-ADE gauge symmetries
- higher level current algebras
- Cosmological constant profiles
- Appearance of tachyons
[cf. Graña's and Fraiman's talks]

Objective: Classify a family of heterotic strings in $\mathrm{D} \geq 6$.
[de Boer+ '01]

Motivation: Explore the interplay of rank reduction and SUSY breaking.

- non-ADE gauge symmetries
- higher level current algebras
- higher level current algebras
- Cosmological constant profiles
- Appearance of tachyons
[cf. Graña's and Fraiman's talks]
Strategy: Relate theories to 2D chiral CFTs with $\mathrm{c}=24$.

Supersymmetric case:

1. Vanilla heterotic string: Compactify on T 8 and polarize Narain lattice \wedge.

Supersymmetric case:

1. Vanilla heterotic string: Compactify on T8 and polarize Narain lattice Λ.

Negative definite

$$
\Lambda=\Gamma_{8,24} \simeq N_{I} \oplus E_{8}(-1) \quad Z(\tau, \bar{\tau})=Z_{L}(\tau) \times Z_{R}(\bar{\tau})
$$

2. CHL string: (def: orbifold by exchange of E8's with half-shift on a circle)

Story repeats. Compactify on T 7 and polarize \wedge.
Worldsheet factorizes at 17 points in moduli space of 2D theory.

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

Bosonic CFT with $\mathbf{c}=24$
\sim
\sim

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

Bosonic CFT with $\mathbf{c}=24$ \sim classified in [Schellekens '92]

There are 71 possible left-moving CFTs, arranged into $\mathbf{1 2}$ genera according to underlying lattice [Hohn '17].

General situation:

Holomorphically factorized heterotic worldsheets in 2D (with 16 supercharges) take the form

```
# Bosonic CFT with c=24 
```

sCFT with $\mathrm{c}=12$
~ based on E8 lattice

There are 71 possible left-moving CFTs, arranged into $\mathbf{1 2}$ genera according to underlying lattice [Hohn '17].

Each genus, except for the monster, gives a moduli space with non-trivial decompactification limit to $\mathrm{D} \geq 6$ [Fraiman, HPF '22]

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with $\mathrm{c}=16$.

7 Fermionic CFTs
 Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with $\mathrm{c}=16$.

7 Fermionic CFTs Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.
Lesson: Should look for classification of chiral fermionic CFTs with $\mathrm{c}=24$.

Non-supersymmetric case:

Observation: 10D heterotic strings are given by chiral CFTs with $\mathrm{c}=16$.

7 Fermionic CFTs Non-supersymmetric Heterotic

See [Boyle Smith+ '23] for recent work.
Lesson: Should look for classification of chiral fermionic CFTs with $\mathrm{c}=24$.
Done recently in [Hohn, Möller '23] !

Results of classification:

- 969 chiral fermionic 2D CFTs with $\mathrm{c}=24$.

Results of classification:

- 969 chiral fermionic 2D CFTs with $c=24$.
- Obtained as orbifolds of bosonic CFTs.

Results of classification:

- 969 chiral fermionic 2D CFTs with $c=24$.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera, 2 coming from the monster CFT.

Results of classification:

- 969 chiral fermionic 2D CFTs with $c=24$.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera, 2 coming from the monster CFT.

Neighborhood Graph

Results of classification:

- 969 chiral fermionic 2D CFTs with $\mathrm{c}=24$.
- Obtained as orbifolds of bosonic CFTs.
- Arrange into 33 genera, 2 coming from the monster CFT.

Labels indicate type of orbifold:
I , Ila and IIb = inner automorphism + (-1) ${ }^{\mathrm{F}}$ different kinds of shift vectors e.g. I means usual SS reduction lla,b possible for rank reduced theories

$$
\text { III = outer automorphism }+(-1)^{\mathrm{F}}
$$

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point
4. Compare left-moving partition function with data in [Hohn, Möller '23]

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point
4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- $B_{\text {III }}: E_{8}$ string

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point
4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- $B_{1 I I}: E_{8}$ string
- \mathbf{B}_{1} : SS reduction of CHL string
(nothing too exciting...)
(Closest analog to usual non-susy)

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point
4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- $B_{1 I I}: E_{8}$ string
- \mathbf{B}_{1} : SS reduction of CHL string
- $\mathbf{B}_{\mathrm{IIb}}$: Orbifold $\mathrm{Het} / \mathrm{S} 1$ by CHL x $(-1)^{\mathrm{F}}$
(nothing too exciting...)
(Closest analog to usual non-susy) (Studied in [Nakajima '23])

Relating these CFTs to heterotic theories:

Strategy:

1. Compute partition function of candidate non-supersymmetric string
2. Compactify toroidally to 2 D
3. Deform to holomorphic factorization point
4. Compare left-moving partition function with data in [Hohn, Möller '23]

Explicit results for genus B:

- $B_{1 I I}: E_{8}$ string
- \mathbf{B}_{1} : SS reduction of CHL string
- \mathbf{B}_{116} : Orbifold Het/S1 by CHL x $(-1)^{\mathrm{F}}$
- $B_{\text {III }}$: SS reduction of E_{8} string
(nothing too exciting...)
(Closest analog to usual non-susy)
(Studied in [Nakajima '23])
(A bit exotic, generic tachyon?)

Other theories: obtained along the same lines?
Those of type I and llb should be easy to get.

Neighborhood Graph

Other theories: obtained along the same lines?
Those of type I and IIb should be easy to get.
Note: This predicts four 6D non-supersymmetric islands (no classical moduli apart from dilaton).

Are they tachyonic?
If not, what are the values of their cosmological constants?

Neighborhood Graph

Other theories: obtained along the same lines?
Those of type I and llb should be easy to get.
Note: This predicts four 6D non-supersymmetric islands (no classical moduli apart from dilaton).

Are they tachyonic?
If not, what are the values of their cosmological constants?

Might be useful in constructing nonsupersymmetric AdS3 vacua [Baykara+ '22] since the problem of minimizing the CC is bypassed.

Neighborhood Graph

Future work:

1. In supersymmetric case the 2D CFTs encode gauge symmetries of 6D counterparts. Does this occur here also?
2. Can we extend this picture to include Type II theories? In supersymmetric case this comes out naturally.
3. Are there relations among the spectra of the different theories? Is there a frozen singularity picture?

Thanks for you attention!

