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Swampland and F-theoretic motivations

Emergent String Conjecture (ESC) [Lee, Lerche, Weigand '19]
Infinite distance limits in moduli space are either
• pure decompactification limits (infinite tower of KK states),
• or emergent string limits (infinite tower of string excitations).

Does it hold in theMc.s. of F-theory? See [Lee, (Lerche), Weigand '21] for 8D.

KK string

Sw
am

pl
an
d

What are non-minimal sings. in F-theory?

• No crepant resolution in the fiber.
• Typically discarded in F-theory.

They are the open-moduli (complex
structure) infinite-distance limits of F-theory.

codim(Σ) ord(f, g)Σ Interpretation

1 (≥ 4,≥ 6) ∞-distance

2 ([4, 8), [6, 12)) SCFTs

2 (≥ 8,≥ 12) ∞-distance

F-
th
eo
ry

Goal of this work
Understand the geometry and physics of the infinite-distance non-minimal singularities of CY3.
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Complex structure degenerations in 6D F-theory

We restrict to single infinite-distance limit degenerations:

degeneration curves do not intersect ⇔ Y0 =
⋃P
p=0 Y

p, Yp ∩ Yq ∩ Yr = ∅, p, q, r distinct.

They can occur over g(C) = 0 and g(C) = 1 curves.

The g(C) = 1 possibilities are C = KFn for n = 0, 1, 2. We focus on genus zero degenerations.

Genus zero degenerations
Genus zero curves compatible with single infinite-distance limit degenerations:

• Case A: C = h or C = h+ nf (horizontal model).

• Case B: C = f (vertical model).
• Case C: C = h+ (n+ 1)f for n ≤ 6 or C = h+ 2f for n = 0.
• Case D: C = 2h+ bf, with (n, b) = (0, 1), (1, 2).
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Condensed summary

Some core features discussed in [RAG, Lee, Weigand (to appear)]:

• Spacetime degenerates into components at local
weak and strong coupling.

• 7-branes can extend between components,
leading to local enhancements.

• Decompactification limits can be complicated,
leading to defect theories.

Y00 Y10 Y20Yu1 Yu2

G2h
G2v

G1v

G1h Gm

C

6D 6D

G1v G2v
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Bounds on the vertical gauge rank

The vertical gauge algebras are:

• the gauge groups in the
decompactification defects, and

• the non-perturbative gauge factors in
the heterotic duals.

When we tune vertical gauge enhancements

(∆′
P − αVP) · SP < ∆′

P · SP .

This leads to bounds on the rank of the
defect gauge groups

rank(gver) ≤ max(rank(gver)) .

{e0 = 0} {e1 = 0} {e0 = 0} {e1 = 0}

v = 0
rank(gver) < max(rank(gver))

s = 0
minimal

{e0 = 0} {e1 = 0}

v = 0
rank(gver) > max(rank(gver))

s = 0
non-minimal

{e0 = 0} {e1 = 0}

v = 0
rank(gver) = max(rank(gver))

s = 0
E8

{e0 = 0} {e1 = 0} {e2 = 0}

v = 0
rank(gver) = max(rank(gver))

s = 0
E8

v = 0
rank(gver) > max(rank(gver))

tune
vertical
algebras

saturate
the

bound

violate
the

bound

re
so
lv
e
th
e
ne
w
cu
rv
e

of
no
n-
m
in
im
al
fib
er
s
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Global weak coupling limits

We would like to determine when the 6D analogues of the 8D Type III.b models are possible:

Global weak coupling limit ⇔ In0 − · · · − InP with np > 0, ∀p.

Horizontal weak coupling limits
Horizontal models admit global weak coupling iff they are constructed over Fn with 0 ≤ n ≤ 4.

As a consequence, horizontal models over Fn with n ≥ 5 cannot have a Type IIB orientifold as the
endpoint of the infinite-distance limit.

This can be argued for in several ways:
• a physical argument,
• the geometry of the central fiber,
• and the Sen-limits of Tate models.

From the physics:

• F-theory models over Fn≥3 have non-Higgs. clusters.
• For n ≥ 5 these are the exceptional groups E6, E7 and
E8, i.e. strongly coupled gauge dynamics.

• Hence, they should not be present in a global weak
coupling limit.
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Global weak coupling limits

Local weak coupling requires an accidental
cancellation structure

fp = −3h2p , gp = 2h3p , hp ∈ H0(Bp,L⊗2
p ) .

This will force non-minimal fibers if
• we work over Fn with n ≥ 5, or
• if we tune a very big vertical algebra.

The model then sheds a new component at
local strong coupling, destroying the global
weak coupling limit.

{eP−1 = 0} {eP = 0}

s = 0
En minimal

{eP−1 = 0} {eP = 0}

s = 0
non-minimal

{eP−1 = 0} {eP = 0} {eP+1 = 0}

s = 0
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tune global weak coupling

resolve the new curve
of non-minimal fibers
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Horizontal Type III.b limits

Let us recall that these are only possible for models constructed over Fn with 0 ≤ n ≤ 4.

Horizontal Type III.b limits
Horizontal limits with In0 − · · · − InP with np > 0, ∀p are the relative version of 8D Type III.b limits.

The double cover of Fn giving the Type IIB orientifold interpretation is a non-generic
P2112[4]-fibration over P1b, in other words, an elliptically fibered K3 surface.

Studying its branching locus, one sees that two O7-planes coalesce in the limit, which usually
produces strongly coupled dynamics. The coalescence and the weak coupling limit compete.

• If the O7-planes coalesce faster than we go to weak coupling⇒ Global weak coupling cannot
be maintained⇒ Horizontal Type III.a limit in F-theory.

• If we go to weak coupling faster than the O7-planes coalesce⇒ Global weak coupling can be
maintained⇒ Horizontal Type III.b limit in F-theory.
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Summary

• Non-minimal singularities in F-theoryxy
Open-moduli infinite-distance limits

• Studied through a systematic
geometrical analysis, e.g.

• possible degeneration types,
• bounds on the defect gauge algebras,
• existence of global weak coupling limits.

• Limits interpreted as

• partial decompactification with defects,
• emergent string limits (weak coupling).

{e0 = 0} {e1 = 0} {e2 = 0}
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Thank you!
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