Defect Spectroscopy on 23GeV Proton-Irradiated CZ Pad Diodes

Niels Sorgenfrei*, Eckhart Fretwurst, Yana Gurimskaya*, Anja Himmerlich*, Chuan Liao, Michael Moll*, Ioana Pintilie, Joern Schwandt, Moritz Wiehe*

- * Conseil européen pour la recherche nucléaire (CERN)
- § Institute of Physics, University of Freiburg
- † Institute of Experimental Physics, University of Hamburg
- # National Institute of Materials Physics (NIMP), Bucharest

42nd RD50 Workshop Tivat, Montenegro 20 06 2023

universitätfreiburg NIMP

Federal Ministry of Education and Research

SPONSORED BY THE

Motivation for Defect Characterisation

- Identify defects in silicon lattice responsible for macroscopic changes / degradation of sensor properties
 - Increase of full depletion voltage and noise, decrease of charge collection
- Specific defects are responsible for specific macroscopic changes
- Use this knowledge in defect engineering to mitigate radiation damage
- Use characterised defect parameters as input for device simulations to improve them

Devices Studied

- Produced by CIS
- p-type CZ
- 100Ωcm
- 0.06927 cm² area
- 50 µm or 350 µm thickness
- 23GeV proton irradiation
 - @ PS-IRRAD Proton Facility (hardness factor 0.62)
- Not annealed after irradiation

Proton Fluence [p/cm²]	Samples	Nominal Thickness
1E+13	CIS-16-CZ-03-100-DS-66	
7E+13	CIS-16-CZ-03-100-DS-67	5 0μm
4E+14	CIS-16-CZ-03-100-DS-69	
1E+13	CIS-16-CZ-05-350-DS-63	
7E+13	CIS-16-CZ-05-350-DS-64	350µm
4E+14	CIS-16-CZ-05-350-DS-77	

Confirmed by TPA-TCT measurements!

IV Measurements

- Shielded probe station, flooded with dry air
- HV from chuck
- Guard ring grounded
- Room temp. (unirrad.) or -20°C (irrad.)

Fluence [p/cm²]

4.0 1e14

CV Measurements

- All measured @10kHz
- Room temp. (unirrad.) or -20°C (irrad.)
- $V_{\rm fd}$ from intersection of lin. fits (only thin sensors)
- N_{eff} from kink or slope of CVs

Resistivity estimated from N_{off} :

- Thin: 114Ωcm
- Thick: 92Ωcm

Manufacturer: 100 Ωcm

† https://www.pvlighthouse.com.au/resistivity N. Sorgenfrei, 42nd RD50, 20.06.23

Current Density & Current Related Damage Parameter α

2.5

1e14

Thick

2.0

Thermally Stimulated Current (TSC)

- 1. **Cool down sensor** under reverse bias (to not fill traps with majority carriers)
- 2. **Inject charge** carriers
 - o Forward bias for e & h
 - 0V for majority carriers (h)
 - Optical injection
- 3. **Heat up sensor** at constant heating rate under reverse bias
 - Measure current due to detrapping of charges at specific temperatures
 - Obtain defect concentration, activation energy, ...

Standard parameters used for electrical filling:

- -200V cool down bias
- 11 K/min heating rate
- 60s filling time + 60s wait after filling

TSC Measurements of Thin Sensors (Electrical Filling)

Cooling down @-200V

e, h filling

- Forward bias filling (20V, 1mA) @20K for 60s
- 3. Warming up @-50V

20

- Cooling down @-200V
- **0V filling** (majority carriers) @20K for 60s
- Warming up @-50V

From difference between forward bias and 0V filling infer which kind of trap (e or h)

4E+14

- E.g.: E30 visible in e/h filling, but not in h filling plot \rightarrow electron trap
- Disentangle overlapping peaks
 - X-Defect (h trap) and BiOi (e trap)

TSC Measurements of Thick Sensors (Electrical Filling)

- 1. Cooling down @-200V
- 2. Forward bias filling (300 V, 1 mA) @ 20 K for 60 s
- 3. Warming up @-200V

- Cooling down @-200V
- 2. **0V filling** (majority carriers) @20K for 60s
- 3. Warming up @-200V

Negative TSC Peaks

- Measured twice in the Acceptor Removal Team (Hamburg & CERN) on two identical devices (same fluence, thickness, wafer)
- Negative peaks only observed for
 - Thick sensor
 - 7E+13 (middle fluence)
- Negative current → charges flow in opposite direction
 - Polarisation inside sensor?
 - o Intrinsic E-field stronger than externally applied?

Still under investigation!

Dependence on Filling Time (tfill) and Filling Temperature (Tfill)

- No dependence on filling time for electrical filling
- Reliable repeatability of measurements
- Strong dependence on filling temperature

- Filling of X-Defect and CiOi strongly dependent on Tfill
 - → Strong dependence in calculated defect concentration
- Calculated defect conc. dependent on amount of h available in 0V filling (related to N_{eff} , fluence dependent)

Dependence on Filling Temperature (Tfill)

- CiOi filled more than with 0V filling
- BiOi only weakly dependent on Tfill
- X-Defect overlapped with BiOi
 - Difficult to extract accurate defect concentration

Light Injection & Dependence on Intensity and tfill

Shine light on sensor to fill traps:

- Infrared (IR) goes through sensor: creates e & h
- Green absorbed after few microns in Si (1-3μm)
 - Green on Front: h
 - o Green on Back: e

 Filling of defects depends on light intensity and filling time

Dependence on Tfill for IR and Green Light

- IR filling does not dependent on Tfill
- Green filling does dependent on Tfill

IR vs Green Front/Back

Can choose between e and h traps with Green light

- Integral of peaks differ for IR and Green
 - Light diodes have different intensities
 - Green depends on Tfill, IR does not
 - Filling not saturated!
- X-Defect not filled with IR?
- Unknown electron trap concealed by CiOi
 - Not observable with electrical filling
 - Always overshadowed by CiOi

IR vs Electrical Filling

- Overall similar picture, but some differences observed
- Data shown as measured:
 - Not normalised to illuminated area
 - Need to normalise according to number of e and h injected?
- Small temp. defects (E30, E35) only filled by electrical pulse?
 - → More work to be done!

Conclusion

- Results shown for p-type CZ pad diodes, 50/350 µm thickness, 3 proton fluences (1E+13, 7E+13, 4E+14)
- Light injection with IR and Green can be used for e & h, h or e filling!
- Negative TSC spectrum observed by two independent setups → **Must be physics!**

Open Questions

- Negative peaks caused by polarisation?
- Negative peaks only observed for thick sensors at that fluence?
- IR filling not dependent on Tfill, but Green filling depends on Tfill?
- IR filling dependent on 4th-root of tfill?
- X-Defect and low temp. electron traps not filled with IR?
- How to saturate IR and Green filling?

Outlook

- Extract defect concentrations and calculate introduction rates
- Annealing study
- Study electron trap hidden under the CiOi peak

Backup

Used IV/CV Setup @ CERN

CV Measurement Data

50 µm	V_fd [V]	C_end [pF]	N_eff [E+12 1/cm³] Kink	N_eff [E+12 1/cm³] Slope
Unirrad.	168.1 ± 0.2	16.68 ± 0.01	117.7 ± 0.2	118.88 ± 0.04
1E13	163.9 ± 0.3	16.61 ± 0.02	113.7 ± 0.3	117.92 ± 0.14
7E13	110.7 ± 0.3	16.84 ± 0.02	78.9 ± 0.3	79.2 ± 0.2
4E14	56.4 ± 0.2	17.02 ± 0.04	41.1 ± 0.2	42.1 ± 0.2

350 µm	N_eff [E+12 1/cm³] Slope	
Unirrad.	144.8 ± 0.4	
1E13	131.4 ± 0.4	
7E13	85.5 ± 0.1	
4E14	40.5 ± 0.01	

$$N_{\rm eff} = \frac{2C_{\rm end}^2 V_{\rm eff}}{\varepsilon_0 \varepsilon_r A^2 c_{\rm eff}}$$

$$\begin{split} & \textit{N}_{\text{eff}} \text{ from kink:} & \textit{N}_{\text{eff}} \text{ from slope:} \\ & N_{\text{eff}} = \frac{2C_{\text{end}}^2V_{\text{fd}}}{\varepsilon_0\varepsilon_rA^2q_0} & N_{\text{eff}} = \frac{2}{\varepsilon_0\varepsilon_rA^2q_0}\frac{\text{d}(1/C^2)}{\text{d}V} \end{split}$$

Depletion Width

$$w(V) = \frac{\varepsilon_0 \varepsilon_r A}{C(V)}$$

Tfill Dependence of Green Back Filling

IR Front vs Back Illumination

- Should yield no difference
- No difference in amount and shape of observed defects
- Back has smaller opening in cryostat shield
 - \rightarrow Less light intensity
 - $\rightarrow \text{Less filling}$