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A bit of history…

● 1st solar powered satellite in space
● launched in March 1958 (video) for initially 90 days mission
● to test the launch capabilities of a 3-stage test vehicle
● track effects of space environment, geodetic measurements
● 6 single crystal Si solar cells with BOL efficiency 10% delivering ~1W
● still in orbit (~65 y 3 m)... record-holder of oldest man-made objects 

being launched to Space
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Vanguard 1 (1958 Beta 2):

Vanguard 1, remaining in MEO for >60 years
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~1.5 kg ~152 mm

The first operating c-Si solar cell was reported in 1954 
(Chapin et al., Bell Labs), initially 〜6% efficiency.

The history of space photovoltaics is in many ways the history of PV at large. 
Daryl Chapin, Calvin Fuller, and Gerald Pearson invented ‘solar battery’ as a 
the space solar power system at Bell Labs in 1953.

https://archive.org/details/1958-03-17_3rd_Vanguard_Successful
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1958-002B
https://en.wikipedia.org/wiki/Medium_Earth_orbit


Today
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~1.5 kg ~152 mm● Since early 2000s III-V multi-junction solar cells 
dominate space market, which is not easy to enter for 
new technologies

● Why? 
III-V: 4-junctions by Azur Space: 

○ high BOL efficiency (31.8%), 1.3W/cell (30cm2) 
○ >2×EOL efficiency to Si
○ higher radiation hardness

● Cost around 3 orders of magnitude higher than Si
● Environmental compatibility ?

Interactive efficiency chart by NREL

➡ benefit on system level cost
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https://www.nrel.gov/pv/interactive-cell-efficiency.html


Motivation

Ultimate solution:

- Low cost (<$1/W potential) 

- Low-mass

- Flexible 

- Rigid

- Manufacturable (multi-GW scaling potential)

- Best EOL efficiency for long missions (>10 years)
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Solar cells EOL efficiency degradation after 
electron irradiation
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Silicon:

- ☑
- ☑
- ☑
- ☑
- ☑
- 🧩

! Need to solve the radiation-damage problem riddle !
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Converting light to electricity ⇉ key strategy for Space



A solar cell, or PV cell, is an electronic device based on p-n junction that converts the energy of light (☀) directly into 
electricity by the photovoltaic effect. Basic processes of PV effect:

● generation of charge carriers due to absorption;
● subsequent separation of photo-generated charge carriers in junction;
● collection of photo-generated charge carriers at the terminals.
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Structure of the PERL (top-left), HES-IBF (top-right), both-side junction (bottom-left) 
and thin-film solar cells for space application.

Evolution in Si solar cell design

What is a solar cell?

Basic photovoltaic principle: 
incident light hitting the cell creates e-h pairs, which are separated by 
potential barrier at junction creating a voltage that drives current through 
external circuit.
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https://en.wikipedia.org/wiki/Light
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/Photovoltaic_effect
https://doi.org/10.1016/S0927-0248(00)00237-3


Space Environment
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Space environment and types of orbits

GEO (Geostationary Orbit):

- 35 786 km above 
equator;

- weak geo-magnetic 
shield → high level of 
radiation;

- extreme temperatures;

- satellites rotate at the 
same speed as Earth;

- weather monitoring, 
telecommunication, 
surveillance;

- long missions (15-20 
years) - SCs with longer 
operation lifetime.

  LEO (Low Earth Orbit):

- 500-2000 km from Earth;

- orbit used for ISS, 
satellite imaging;

- low level of radiation, 
mostly electrons;

- Earth’s shadow → >5k 
thermal cycles/year;

- Earth atmosphere → 
aerodynamic drag;

- short missions (up to 10 
years) - SC with high 
BOL efficiency.

Satellites, spacecrafts operating in inner Solar system: to power sensors, active heating-cooling are mainly designed for 2 kinds of 
missions, known as:
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Effects of Space Environment
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Space environment and typical effects on space systems

Severe conditions:

- High energy (up to hundreds of MeV) high fluence ~1016 
electron and proton irradiation;

- Vacuum;
- Very high UV content (AM0);
- Thermal cycles - several k (e.g. -170 → +150C, strongly 

depends on mission);
- Electrostatic discharge (ESD) events;
- Micrometeorites/debris;
- Launch: vibration, acoustic, shock depressurisation;
- On ground: humidity;

…

Overview of Space radiation and other conditions that can affect solar cell 
performance, such as ionizing radiation, energetic particles, etc.
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Overview of Space radiation and other conditions that can affect solar cell 
performance, such as ionizing radiation, energetic particles, etc.

Successful operation in Space requires :
- extensive qualification tests;
- radiation testing of components;
- understanding of the mechanisms that cause degradation.
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Space environment and typical effects on space systems



Radiation effects on Si solar cells
- In space e and p irradiation ⇒ atomic displacements (PKA) in Si bulk ⇒ lattice defects (V, I, complexes: V-D, I-A, etc.)
- SRH statistics: highly active recombination/trapping centers generated ⇒ ↓ output power (EOL efficiency)

appropriate shielding (coverglass ← changes in the transmission of light in the visible and near IR region) 

Shielding effect on total dose for 5-years mission at 98°, 705 km

After A.H. Johnston, 2000

DDD＝∫(𝑑𝜑(E)／𝑑E)S(E)𝑑E,

𝜑(E) - irradiation fluence, 
S(E) - NIEL value

DDD can be correlated 
analytically by NIEL

Dependence of NIEL on proton energy in silicon

After G.P. Summers, 1993

Please, see next talk given by Vendula Subert
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2.54 5.08 (mm of Al)0.5 

https://nepp.nasa.gov/docuploads/D41D389D-04D4-4710-BBCFF24F4529B3B3/Dmg_Space-00.pdf
https://pdfs.semanticscholar.org/8273/ed4eddac9fd6af0ac0cbac13b49351feb4f0.pdf


Radiation effects on Si solar cells
 n+p configuration is a preferred choice over p+n (more Rad-Hard)
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Model with lifetime, Rb and depletion layer broadening

After Yamaguchi, 1999
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Back-surface field and reflector (BSFR) 
n+-p-p+ test structure, A=2×2 cm2

I: <1E+16 e/cm2 - the gradual degradation is observed: radiation-induced recombination centers 
contribute to the reduction of the minority carrier diffusion length

II: 1E+16<5E+16 e/cm2 - the anomalous increase is observed: depletion layer width broadening and ↑ in 𝜌 
due to AR effect (↑photo-current contribution)

III: >5E+16 e/cm2 - abrupt decrease: ↓ in carrier concentration; and subsequent cell failure: type inversion, 
donors dominate due to ‘super-diffusion’ enhanced by high-fluence electron irradiation, emitter = P 
source, generation of Vs and vacancy-mediated diffusion of P into the bulk

reported by Hisamatsu, 1998

https://doi.org/10.1063/1.369184


Ultra-Thin (UT) Solestial Silicon Solar Cells
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Commercial single-Si Cell

160 µm thick
Diffused Junction
Screen printed Ag and Al
Degrade fast under irradiation
Rigid

Solestial Ultra-Thin Si Cell

20 µm thick
a-Si/c-Si Heterojunction
Electroplated Cu
Potentially more radiation hard
Light-weight and flexible
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Novel UT-Si PV cell technology is in development by Solestial, Inc.
Such solar cells have a potential to achieve efficiencies of >40% in emerging technologies (present >20%), being Rad-Hard, 
light-weight, flexible and low-cost because of high volume manufacturing process available.

Different flavours of UT-Si PV 
cells developed and produced 

by Solestial, Inc.
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Self-curing capabilities of Solestial Solar Cells

Several CiS CZ p-Si sensors (please, see presentation by Niels) are sent to 1 MeV 
electron irradiation to Fermilab 
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● Curing at low temperatures works
● Curing rate increases with thinning the cell
● Cells with ≤ 40 μm thickness have fully restored the initial Voc 
● Validated by the third-party (CEA-INES) 
● Additional curing experiments by low temperature annealing, 

illumination and forward biasing are planned

Curing at 100℃, 500W/m2 halogen light

- Comparison of open-circuit voltage Voc vs annealing time/cell thickness/annealing T 
- Irradiation: 1 MeV electrons: 1E+15 e/cm2; 300 keV protons: 1E+10 p/cm2

- Curing: 65, 80, 100℃; under illumination: 500 W/m2 halogen lamp
- 2nd round of e-irradiation - third-party validation (90℃ → 96% recovery)

20 μm thick, 30 cm2 area

https://20859214.fs1.hubspotusercontent-na1.net/hubfs/20859214/Solestial%20CEA%20Press%20Release%2028%20MAR%202023-1.pdf
https://www.ines-solaire.org/en/about-ines/
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Synergy: KT project for 2022-24
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p-type Si

B-doped

Ga-doped

CZ

FZ

I. Irradiation experiments with MeV energetic electrons and protons up 1E+16

Base for Rad-Hard Si detectors and space solar cells

Low-resistivity (0.6-15 Ω⋅cm) test structures (B-, Ga-doped) CZ and FZ p-Si 
with d ≤ 50μm in development (both Solestial and RD50-AR group)

- Mimicking Space environment
- Verification of NIEL violation

II. Extensive characterisation pre-, post-irradiation, annealing + illumination
Defects identification

Comprehensive knowledge of radiation-induced defects and 
their generation mechanisms

Defect or set of defects ⇆ recombination lifetime 
                                 acceptor removal

                            type inversion

- TCAD
- TRIM+GEANT4 simulations

Inp
ut 

pa
ram

ete
rs

Theoretical models describing generation and evolution of defects in 
presence of different type of impurities in p-Si

III. Radiation damage parameterization

Apply the gained knowledge to improve the radiation hardness of p-type Si-based devices by defect engineering approaches

CERN KT Collaboration Agreement KN5705/KT/EP/263C
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Perovskites and emerging technologies

Frailties:
- toxicity ← replacing lead, encapsulation, coating to reduce lead leakage
- inherent instability and can react with moisture and oxygen → drastic degradation
- low thermal stability (-80℃;+100℃ at best)
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Strength:
- fast advancing solar technology
- include perovskite-structured compound as a light-harvesting level
- hybrid organic-inorganic lead or tin halide-based material 
- simple to process (low-T solution-based processing - coating, printing, deposition)
- tunable bandgap (1.3-2.2 eV) by altering halide content
- BOL efficiency AM1.5 solar spectrum - 3.8→25.2%, tandem - 33.2%
- radiation hardness summary available

cations

anion
electron transport layer

hole transport layer

Not yet ready to conquest the Space market!

https://docs.google.com/document/d/1LPMiDS2PiKHpc_ku-9Ec21_HlVzGropuTgaCUKKq9hQ/edit?usp=sharing
https://en.wikipedia.org/wiki/Ion#Anions_and_cations
https://en.wikipedia.org/wiki/Ion#Anions_and_cations
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Summary of the talk

- Overview of the silicon solar cell technology and others were presented;

- Space environment has certain damage effect due to radiation == displacements and 
ionisation due to presence of high-energy electrons and protons;

- Progress in Si solar cells for Space has occurred over time and still ongoing;

- Anomalous degradation at high fluences (>1E+16 e/cm2) were observed and models exist;

- Radiation-hard Si solar cells with self-curing capabilities are under development;

- Synergy to improve radiation hardness by defect engineering approaches for space solar 
cells development and HEP community via resources and efforts is created.
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Thanks for your attention!


