SOLID-STATE SENSOR CHARACTERISATION USING TWO-PHOTON ABSORPTION (TPA) TECHNIQUE

MANCHESTER 1824

Enoch Ejopu, Oscar Augusto de Aguiar Francisco, Marco Gersabeck, Alexander Oh, Francisca Munoz Sanchez, Michael Perry, Graham Miller, Patrick Parkinson, Nawal Al Amairi, Ilyas Benaoumeur, Andreas Mastronikolis, Huazhen Li

The University of Manchester, UK
$42^{\text {nd }}$ RD50 Workshop on Radiation Hard Semiconductor Devices for Very
High Luminosity Colliders
Tivat, Montenegro, 20 - 23 June 2023

Outline

- Introduction
- Set-up
- Measurements
- Summary
- Future

Introduction

- TPA involves simultaneous absorption of two photons.
- Also called Two-photon excitation or Nonlinear absorption.
- Unlike SPA where a single photon is absorbed.
- In TPA, a "point-like" laser probe called "voxel" is used to characterize a device.
- No photons are absorbed out of the focus.

Set-up Ability

- Pharos wavelength range is from 330 nm to 16000 nm .
- Tuned by the Optical Linear Parametric Amplifier (OPA).

Pharos (nm)	<1000			<2500	3000//....... 16,000
Silicon	<1107			<2214	
Diamond	<226 $330-453$				
Germanium	<1771.2				<3542
Silicon Carbide	<380.3	<760			
Gallium Indium	<1653			<3306	
Gallium Arsenide	<873.1				

SPA TPA \square

Silicon Diode Measurements

- CIS Diode.
- ToT (width at constant fraction of 20%) by NDF (approx. intensity).
- High photon intensity leads to plasma which affects the collection time.
- Low photon intensity leads to larger noise, which starts to get comparable with the signal.
- Performed in a non-plasma region.

Palomo 2019

Silicon Diode
 Measurements

- Based on the properties of the lens (NA 0.5, 20X) we expect the following voxel shape.

ilyas

Silicon Diode
 Measurements

- Determination of expected amount of charge with respect to signal.

- Signal shape throughout the device depth.
- Charge distribution vs Depth well described by model.
- Spatial resolution defined by the voxel.
- Voxel was found to be 8.58 um by 1.52 um.

Measurements

- TPA confirmed as seen from the quadratic dependence and depth scan.
- Probability of e-h generation is proportional to intensity squared.

Measurements

- Voltage scan involves varying voltage while depth \& NDF are constant.
- Signal gets faster with increase in voltage.

Depth Scan

- PIN Diode (NLGAD run, CNM), 5.3×5.3 $\mathrm{mm}^{2} \times 275$ um active volume, N -type gain layer, metallization at the back.
- Depth is varied at a constant voltage \& NDF.
- Laser focused $150 \mu \mathrm{~m}$ above the sample and scan done all the way through the sample in increments of $1 \mu \mathrm{~m}$.
- Plot of charge vs depth.

Silicon
Metallization

Depth Scan

- PIN Diode (NLGAD run, CNM), 5.3×5.3 $\mathrm{mm}^{2} \times 275$ um active volume, N -type gain layer, metallization at the back.
- Depth is varied at a constant voltage \& NDF.
- Laser focused $150 \mu \mathrm{~m}$ above the sample and scan done all the way through the sample in increments of $1 \mu \mathrm{~m}$.
- Plot of charge vs depth.

Depth Scan

- PIN Diode (NLGAD run, CNM), 5.3×5.3 $\mathrm{mm}^{2} \times 275$ um active volume, N -type gain layer, metallization at the back.
- Depth is varied at a constant voltage \& NDF.
- Laser focused $150 \mu \mathrm{~m}$ above the sample and scan done all the way through the sample in increments of $1 \mu \mathrm{~m}$.
- Plot of charge vs depth.

3

Depth Scan

- PIN Diode (NLGAD run, CNM), 5.3×5.3 $\mathrm{mm}^{2} \times 275$ um active volume, N -type gain layer, metallization at the back.
- Depth is varied at a constant voltage \& NDF.
- Laser focused $150 \mu \mathrm{~m}$ above the sample and scan done all the way through the sample in increments of $1 \mu \mathrm{~m}$.
- Plot of charge vs depth.

4

Depth Scan

- PIN Diode (NLGAD run, CNM), 5.3×5.3 $\mathrm{mm}^{2} \times 275$ um active volume, N -type gain layer, metallization at the back.
- Depth is varied at a constant voltage \& NDF.
- Laser focused $150 \mu \mathrm{~m}$ above the sample and scan done all the way through the sample in increments of $1 \mu \mathrm{~m}$.
- Plot of charge vs depth.

Silicon

Metallization

5

2D Scan (xz)

- xz scan at constant voltage \& NDF.
- Allow to investigate the electric field/ drift velocity.
- Metal can block completely or partially the laser.
- Reflection at the back.

2D Scan

- Allow to investigate the electric field/ drift velocity.
- Current induced by drifting charge carriers on the collecting electrode is described using the Shockley-Ramo theorem; $\mathrm{I}_{\mathrm{m}}=\mathrm{QE}_{\mathrm{w}}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right) \mathrm{E}$.
- Weighted prompt current $\mathrm{I}_{\mathrm{m}} / \mathrm{Q}_{\text {coll }}=\mathrm{E}_{\mathrm{w}}\left(\mu_{\mathrm{e}}+\mu_{\mathrm{h}}\right) \mathrm{E}$.

arXiv:2211.10339v1

Time Resolution Measurements

- Done for diodes, LGADs etc at a CFD of 50%.
- Multiple waveforms (1000) at same depth, voltage \& energy.
- The difference between the pharos trigger arrival time, t_{0} and the Signal arrival time, t_{1} at a fixed fraction (50\%) of the amplitude for the multiple waveforms.
- The standard deviation of the difference gives the time resolution.

Andreas

Time Resolution Measurements

- Time resolution for each combination of the trigger and signal thresholds were calculated.
- For diode, constant fraction discriminator + linear interpolation algorithm: 114 ps .
- LGADs: 52.8 ps
- Pharos trigger time resolution is 20 ps with room for improvement.

Low Gain Avalanche Detector (LGAD)

- Used 100 um thick LGAD without metallization on the back.

LGAD Time Resolution $=52.8 \mathrm{ps}$, Fit time_res=53.2 ps, ToT=50

0

TPA using
Diamond Sample
TPA using
Diamond Sample curve.

- No signal with voxel out of the sample.
- Confirmation of TPA.
- Using a laser wavelength of 400 nm ($\sim 3.1 \mathrm{eV}$).
- $\mathrm{E}_{\text {gap }}$ of Diamond is 5.47 eV
- Strong indication of TPA from quadratic nature of

\qquad
\qquad
\qquad -
-

\qquad

-

 .

Summary

- Performed TPA characterisation for Silicon diodes, LGADs and Diamond.
- Fast way to characterise devices.
- The set-up has a flexible range for device characterisation.
- Voltage, depth and edge scan and time resolution measurements.
- NEXT:
$>$ Optimising trigger to get better time resolution (below 30 ps).
$>$ Improve amplifier to 12 GHz .
$>$ 3D diamond characterisation.
$>$ Work with irradiated devices.
$>$ iLAGDs, Trench LGADs, Deep Junction LGADs.
$>$ Welcome potential collaborations for more samples.
- Far Future; Performing temperature controlled TPA.

Acknowledgements

- RD50.
- Centro Nacional de Microelectronica (cnm).

Back Up

- TPA is very sensitive to energy.

Photon Intensity Calibration (Upgraded)

- Thus, the need for SPA and TPA reference monitors.
- Energy fluctuates with time.
- Correlated the power meter and the signal in SPA \& TPA.
- Energy per pulse for two different runs can be compared.

CIS Diode

Depth Scan-CIS Diode

CIS Diode...

xy scan

- Investigation of segmented devices.
- Determination of device uniformity.
- At the top, bottom and inside the device.

20/06/2023

E. Ejopu RD50 Workshop, Montenegro

