

Timing performance of the RD50 HV-CMOS

42nd RD50 Workshop 2023

Uwe Kraemer on behalf of RD50-CMOS

21st June 2023

HV-CMOS for radiation hard depleted MAPS

- Electronics embedded in a large deep N-doped well to shield from high voltage
 - Allows for application of ~O(100 V) reverse bias
 - Large depletion zone
 - Fast and more stable charge collection
 - \rightarrow Less sensitive to trapping
 - \rightarrow Improved time resolution

The RD50 DMAPS sensors

- Currently three iterations of Depleted Monolithic Active Pixel Sensors (DMAPS) as part of RD50 project
 - All manufactured by LFoundry in 150 nm HV-CMOS process
 - Recent prototype RD50-MPW3 was delivered in July 2022

MPW2, the previous generation

- 8x8 pixel matrix
- Two pixel flavors
- Large variety of test structures
- Purely analog readout
- Depletion depths of \sim 190 μ m
- Produced in 1.9 kΩ cm and 3.0 kΩ cm resistivities

The RD50-MPW3

- CMOS chip with full analog and digital electronics
- 1.9 kΩ·cm and 3.0 kΩ·cm resistivities
- 320 MHz input clock

5

Uwe Kraemer

The RD50-MPW3

- CMOS chip with full analog and digital electronics
- 1.9 kΩ·cm and 3.0 kΩ·cm resistivities
- 320 MHz input clock

6

42nd RD50 2023

Uwe K<u>raemer</u>

The pixel logic

- Inherited analog pixel design from MPW2
 - 4-bit trim DAC for threshold adjustment
 - Continuous reset current readout
 - Injection circuit for calibration
 - Routing of analog pixels to SMA
- Digital logic newly integrated
 - 8-bit timestamp of leading and trailing edge
 - Double column drain readout and rolling shutter

Double column readout

- Pixels within double column are mirrored
- Double columns with digital signal line in between pixels
- Columns are separated by analog signal lines
- Voltage via mesh from all sides

- \longleftrightarrow Analog signal line
- \longleftrightarrow Digital signal line
- Shielding line

DAQ system

- Chip readout based on Caribou readout system
 - ZYNQ-ZC706 with Yocto based linux
 - Caribou for power distribution
 - Custom chip carrier board
 - Allows chaining of second chip board
 - SMA connectors to probe analog outputs from circuitry

Measuring the time resolution

- Measurements performed in a dark-box
- Setups installed on movable stage
- Signals generated via:
 - Test pulses using injection circuit
 - 980nm laser using bottom-TCT

42nd RD50 2023

 Comparator/Hitbus output measured via oscilloscope

Measuring the time resolution

- All measurement points are at 50% constant fraction
- ToT = $t_{fall_hit_50\%}$ $t_{rise_hit_50\%}$
- First point of signal is relevant value for time measurement
 - Laser measurements
 - $\Delta t = t_{rise_hit_50\%}$ $t_{rise_pulse_50\%}$
 - Test pulse measurements $\Delta t = t_{rise_hit_50\%} - t_{fall_pulse_50\%}$

Fig.: Waveform from test pulse measurement

A small caveat

- Behavior of system is as expected
- Overall time resolution from testpules far worse than expected
- Digital periphery injects a lot of noise into the system
- All measurements operated with periphery disabled

A small caveat

- Behavior of system is as expected
- Overall time resolution from testpules far worse than expected
- Digital periphery injects a lot of noise into the system
- All measurements operated with periphery disabled
- Measurements chosen close to MIP ~ O(13700e-)

Nik[hef

Testpulse measured time resolution of the MPW3

- MIP like charge injections
- Significant variation in spread
- Achieved time resolution for MPW3
- σ_{front_end} ≈ 800 ps @ 13100e⁻

14

MPW2 by comparison

- Far better time resolution using test pulses with MPW2
 - σ_{front_end} ≈ 170 ps @ 12500e⁻

15

TCT measured time resolution of the MPW3

- Charge injection via laser performed to verify test pulse results.
- Measured time resolution far better
 - σ_{front_end} ≈ 250 ps @ 13900e⁻
- At this point unclear where the difference in result comes from
- TCT result is more comparable to TCT result by MPW2.

16

Summary

- New RD50-MPW3 chip produced by LFoundry
 - Far Larger matrix
 - Full digital and analog readout

- MPW3 in general more complicated system with some noise issues (see talk from Patrick Sieberer)
- Overall behavior similar to MPW2 though test pulses perform far worse
- Large discrepancy between achievable time resolution between test pulses O(800ps) and bottom TCT O(250ps)
- Plan to measure analog time resolution at the next test beam.

Backup slides

Nikhef

42nd RD50 2023

1

Uwe Kraemer

Laser ToT vs Testpulse ToT

For now injected charge in electrons was simply estimated based on ToT comparison

Time resolution

- Next future accelerator is the High-Luminosity upgrade of the LHC
 - More collisions per interaction window
 - Higher track densities
 - Higher amounts of radiation
- Track time resolution ~30 ps can resolve many of these issues \rightarrow 4D Tracking

