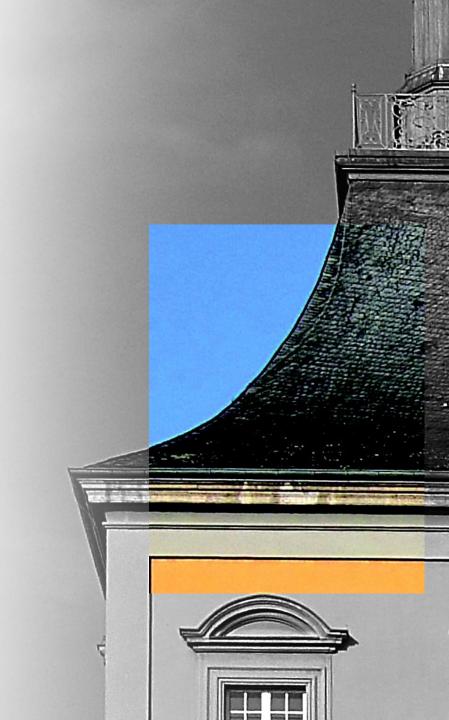


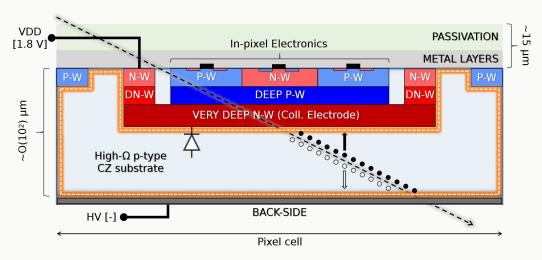
Characterization and radiation-hardness of the LF-Monopix2 DMAPS prototype


Ivan Caicedo*, C. Bespin, J. Dingfelder, T. Hemperek, T. Hirono, F. Huegging, H. Krueger, P. Rymaszewski, L. Schall, T. Wang, N. Wermes, S. Zhang (University of Bonn)

M. Barbero, P. Barrillon, P. Breugnon, N. Destaing, L. Drexler, A. Habib, P. Pangaud, A. Rozanov (Aix Marseille University, CNRS/IN2P3, CPPM)

Y. Degerli, F. Guilloux, P. Schwemling (IRFU CEA-Saclay)

*caicedo@physik.uni-bonn.de


DEPLETED MONOLITHIC ACTIVE PIXEL SENSORS (DMAPS)

- Sensor, front-end and readout electronics in a common silicon unit
- Commercial CMOS processes: Multiple wells to shield electronics
- Considerable depleted regions in highly resistive substrates:

Fast charge collection by drift

"Large Electrode" design

Large collecting well containing in-pixel circuitry

PROS: Short drift distances, strong E-field (Rad-hard) **CONS:** Large detector capacitance, high analog power and ENC

$$au_{CSA} \propto rac{1}{g_m} rac{\mathbf{C_d}}{C_f}$$
 $ENC_{thermal}^2 \propto rac{4}{3} rac{kT}{g_m} rac{\mathbf{C_d^2}}{ au}$

---> Requires design efforts to optimize timing and minimize coupling of digital activity into the collection node.

DMAPS FOR HIGH ENERGY COLLIDER EXPERIMENTS

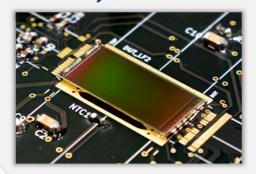
Taking the requirements of future HEP experiments as benchmark:

	ITk Outer Layer	Belle II VTX
Occupancy	1 MHz/mm ²	1.5 MHz/mm²
Time Res.	25 ns	0(100) ns
NIEL	$10^{15} n_{eq}/cm^2$	5x10 ¹⁴ n _{eq} /cm ²
TID	80 Mrad	100 Mrad
Area	O(10m ²)	O(3m ²)

DMAPS would offer:

- Reduced material budget compared to hybrids.
- Cheaper and less complex module production.

The Monopix DMAPS developments


Column-Drain ("FE-I3 like") synchronous R/O architecture and fast front-end implementations

+

Design optimization to preserve charge collection after irradiation

LF-Monopix:

Large electrode DMAPS in LFoundry 150 nm CMOS

TJ-Monopix:

Small electrode DMAPS in Tower 180 nm CMOS

Later talk by C. Bespin

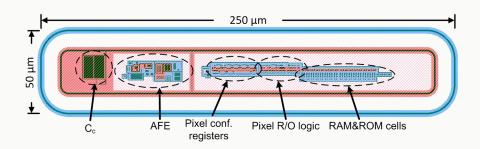
THE LF-MONOPIX PROTOTYPES

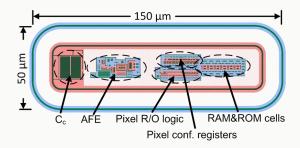
Barbero et al. https://doi.org/10.1088/1748-0221/15/05/P05013
Dingfelder et al. https://doi.org/10.1016/j.nima.2022.166747

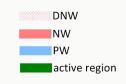
LFoundry 150 nm CMOS process LAB Silizium Labor Bonn Irfu- CEA Saclay Institut de recherche sur les bis fondamentales de l'Univers

LF-Monopix1

(Mar 2017)


LF-Monopix2

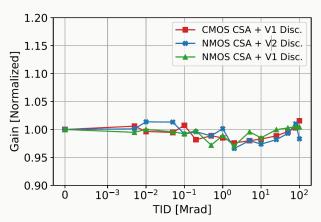

(Feb 2021)

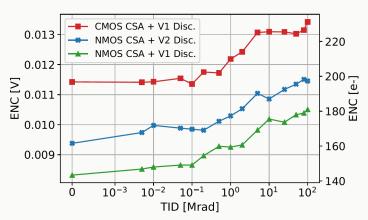


- Full-size (~cm²) large electrode DMAPS.
- Functional columndrain R/O architecture.
- In-pixel electronics in >2 kΩ-cm resistive substrates.

Pixel layouts (Top view):

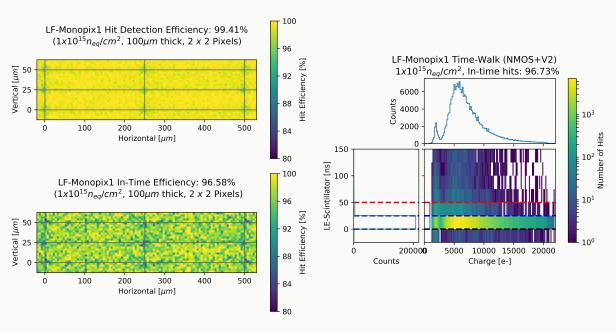
Design strategies for LF-Monopix2: Next talk by Tianyang Wang




LF-MONOPIX1: RADIATION HARDNESS

TID up to 100 Mrad

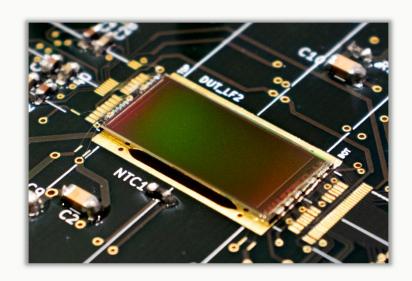
Relative Gain variation: <3%


• **ENC increase:** NMOS CSA (25%), CMOS CSA (15%)

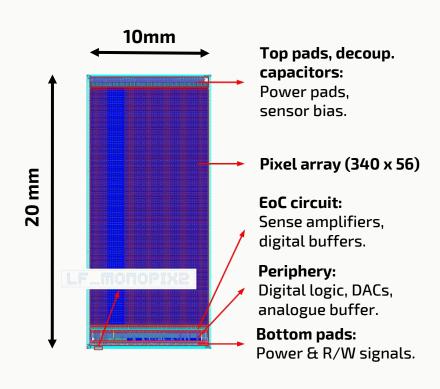
NIEL up to $1x10^{15} N_{eq}/cm^2$

Hit efficiency: ~99.4% (in-time: ~96.6%)
 (100 μm thick | Bias: 150 V | Threshold: 2336±262 e⁻ |

Noise Occ. < 10⁻⁷)



Caicedo et al. http://10.1016/j.nima.2022.167224



LF-MONOPIX2

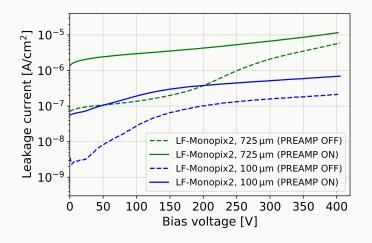
- Smaller pixel pitch than LF-M1: 50 x 150 μm²
 - \rightarrow Reduced C_{det} (~250 fF)
- Larger pixel array (340 rows x 56 cols)
- 40 MHz / 160 MHz CMOS or LVDS serial output.
- Timestamping: 6-bit LE/TE (ToT) @ 25 ns
- Analog power: ~28 μW/pixel (370 mW/cm²)
- New injection & HitOr circuitry: Digital, at pixel level

Column-drain R/O in a 1.7 centimeter long column, with full inpixel electronics

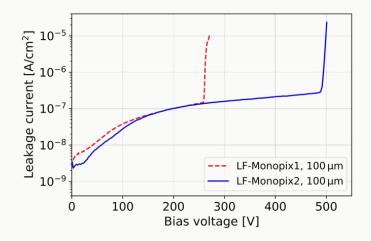
Improved pixel layout for cross-coupling mitigation

Inherited and improved a fast rad-hard front-end (CSA with NMOS input transistor

fast discriminator)

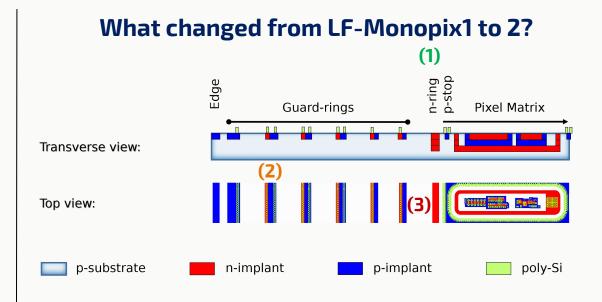

New features to be tested:

- Increased tuning range
- Benefits of smaller $C_f(1.5 \text{ fF})$



SENSOR THINNING AND BREAKDOWN

Succesful wafer thinning and back-side processing

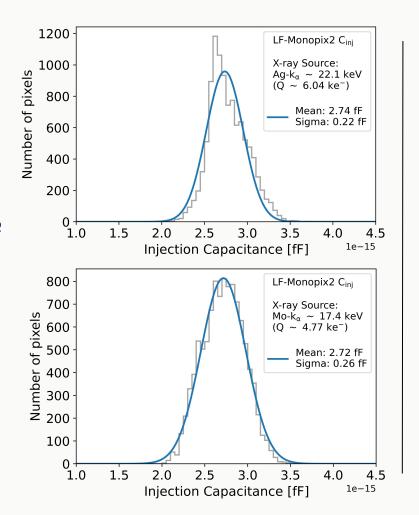

- Leakage current:
 <1 μA/cm²
- No early breakdown

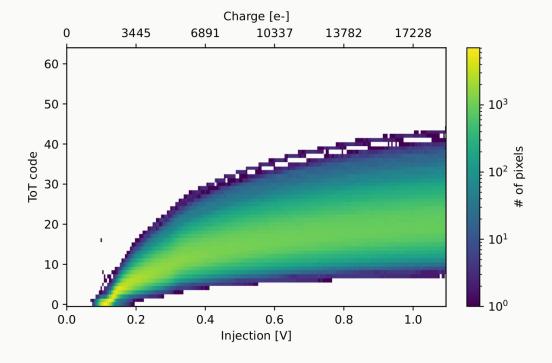
Improved breakdown voltage in LF-Monopix2

(~ 460- 500 V)

due to guard-ring optimization

- Adding Deep N-well on innermost n-ring (1)
 - P+N combination in guard-rings (2)
- Reduction of guard-ring number -> Increase in spacing between n-ring and 1st g. ring (3)

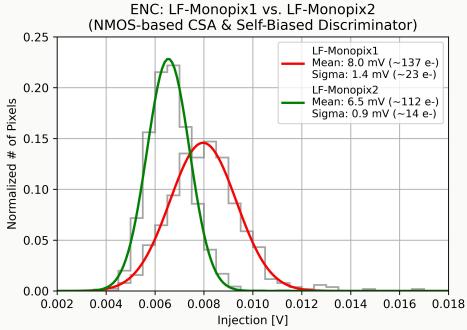



CALIBRATION OF THE INJECTION CIRCUIT

Comparing (per pixel)
the mean ToT for a
known injection voltage
and well-defined
fluorescence peaks:

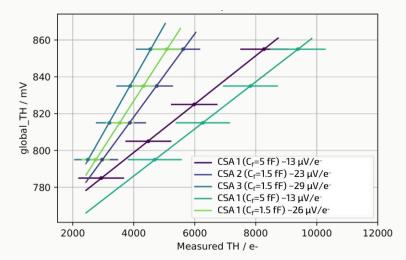
C_{ini} ~ 2.73±0.24 fF

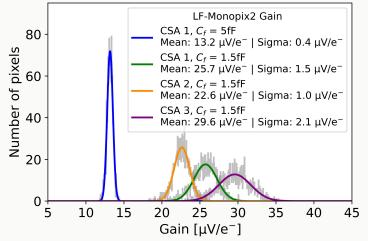
Each pixel's ToT response can be calibrated to charge



ENC & GAIN

ENC from LF-Monopix1 to LF-Monopix2


Decrease of ~20-30% in mean ENC and dispersion for the same front-end implementation

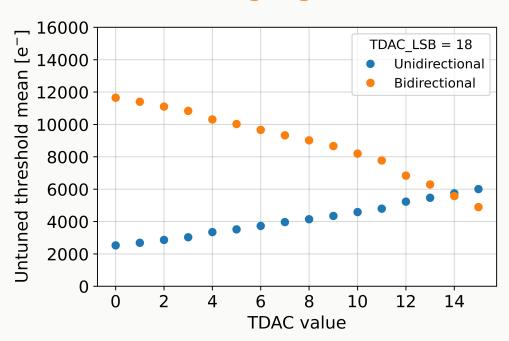

(As expected from smaller pixel $\sim C_d$)

$$ENC^2 = a_{\text{shot}} \tau + a_{1/f} \stackrel{C_D^2}{\longrightarrow} a_{\text{therm}} \stackrel{C_D^2}{\longrightarrow}$$

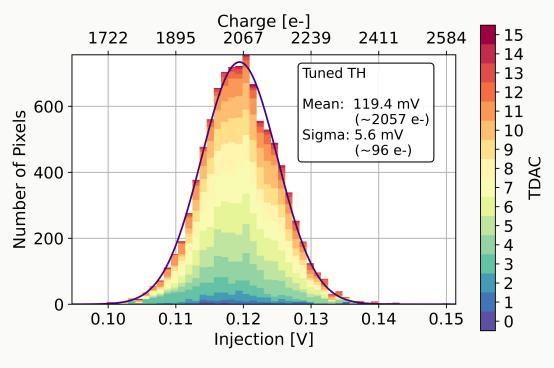
Gain

$$V_{csa} = \frac{Q}{C_f + \frac{C_d + C_f}{A_{csa}}}$$

- Linear gain response
- Both old and new CSAs benefit from a smaller C_f



FRONT-END TUNING

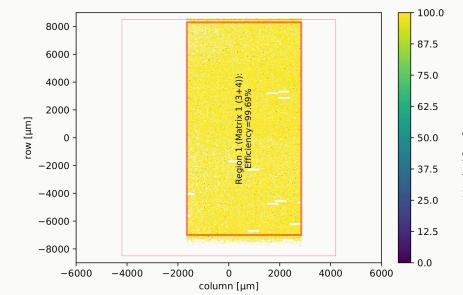

→ Original threshold dispersions ~600-750 e-

Two threshold tuning circuit schemes:

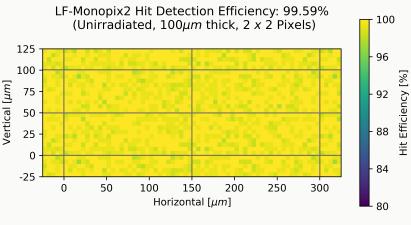
- Current source for unidirectional polarization
- Current source and sink for bidirectional polarization (~2 times the tuning range for same LSB)

Tuned threshold dispersion ~100e-

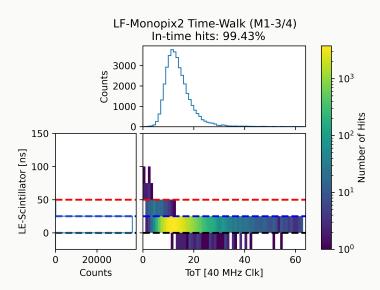
- Normally distributed TDAC values
- Only 1/3 of the maximum TDAC bias current



HIT & IN-TIME EFFICIENCY


Unirradiated chip exposed to 5 GeV e⁻@ DESY

(100 μ m thick | Bias: 60V | Mean threshold ~2ke- | Noise Occ. < 10-7)

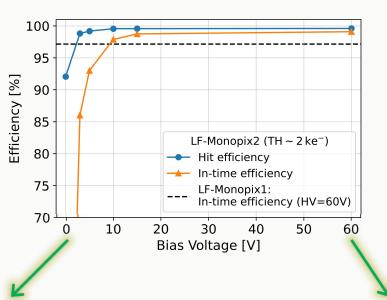

Efficiency map of the full matrix

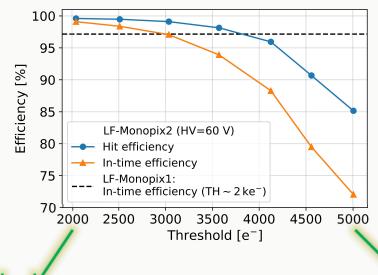
Efficiency projected onto a 2x2 pixel array

Time-walk distribution of seed pixels in efficient events

- Hit detection efficiency and in-time events >99%
- ~2.5% improvement in in-time efficiency (at the same threshold) with respect to LF-M1

TB data analysis carried out using Bonn's BTA: https://github.com/SiLab-Bonn/beam_telescope_analysis

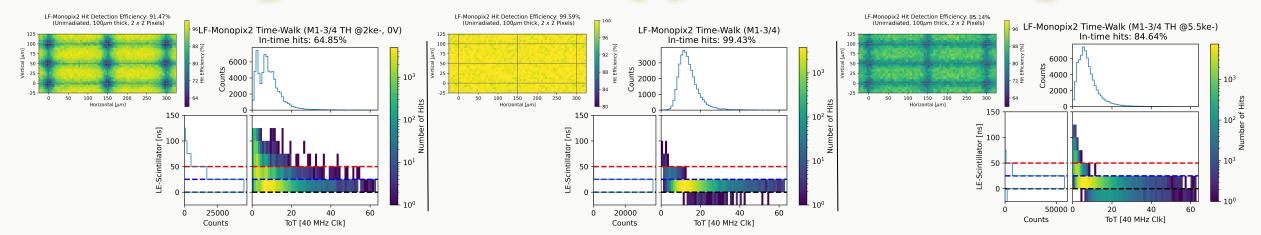

HIT & IN-TIME EFFICIENCY


 Variation with bias voltage:

MIP signal dependent of the depleted volume

 Pronounced drops in pixel corners:

Charge sharing



 Variation with threshold:

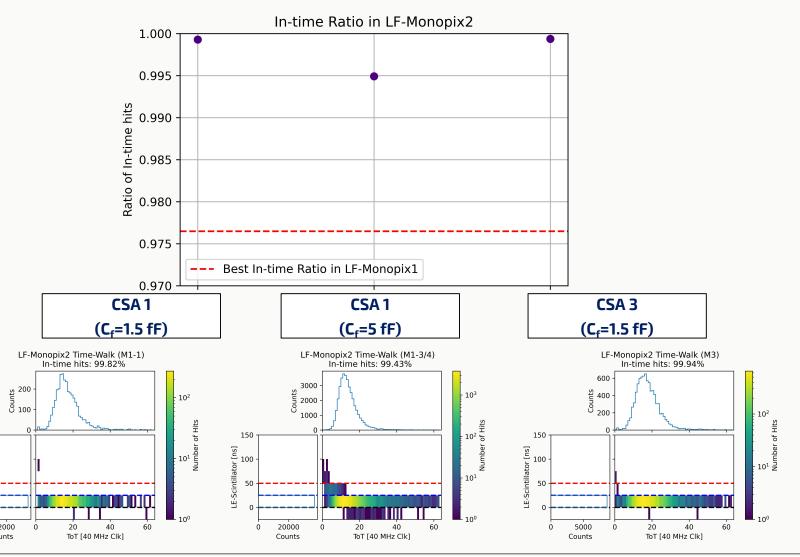
Cut on MIP signal

• Timing dependency:

Front-end away from its operation point. (Signal ~6ke-, TH ~1.5ke-)

TIMING VS FEEDBACK CAPACITANCE

100

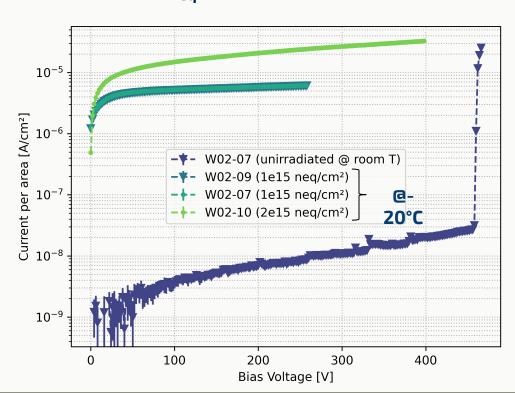

2000

Counts

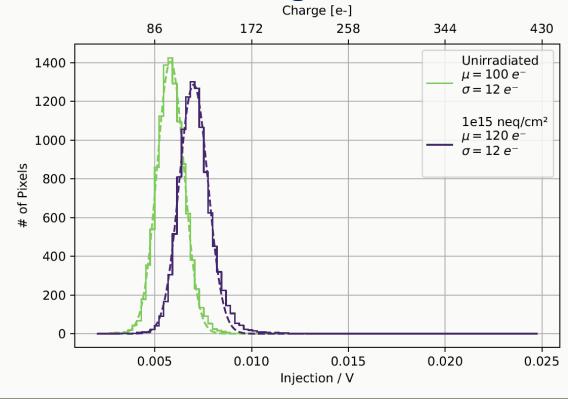
The increase in gain results in all efficient events detected within 25 ns

(Bias: 60V |

Mean threshold ~2ke)



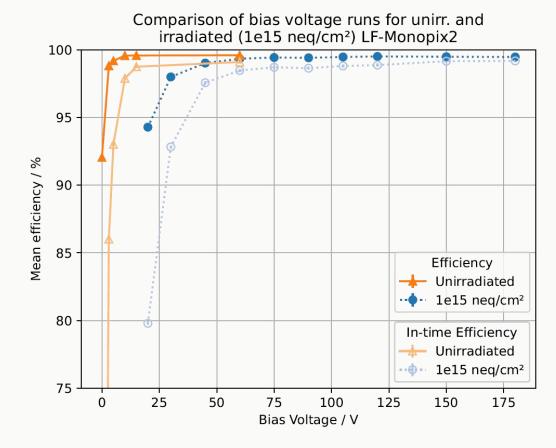
NIEL DAMAGE: LEAKAGE CURRENT & ENC


NIEL → Generation/Recombination levels in band gap → Higher leakage current → Higher ENC

• Samples irradiated with protons up to fluences of $1x10^{15}$ n_{eq}/cm^2 (Bonn) and $2x10^{15}$ n_{eq}/cm^2 (MC40 Birmingham)

Leakage current after NIEL fluence of 2x10¹⁵ **n**_{eq}/**cm**² ~30 μA/cm² (@400V)

15-20% increase in ENC due to higher bulk leakage current

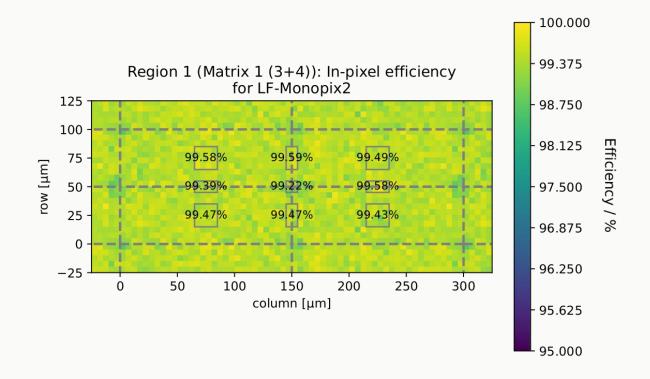

NIEL DAMAGE (1X10¹⁵ N_{EQ}/CM²): DEPLETION

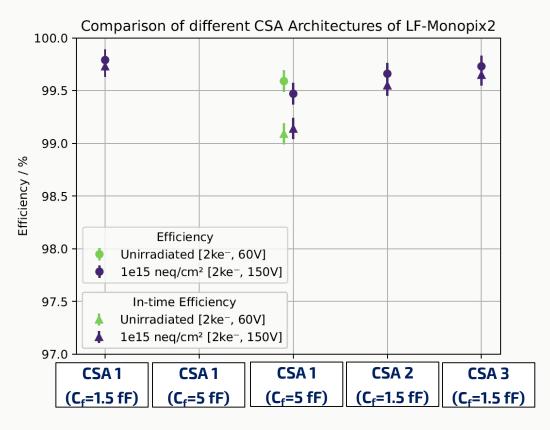
NIEL → Change of effective doping concentration → Larger voltage required for full depletion

85 µm thick Si: Fully depleted from ~150 V

Calibrated Charge MPV for Different Bias Voltages 110 85µm depletion depth W02-07 @ 1e15 neq/cm² 100 7000 W02-09 @ 1e15 neg/cm² W02-01 unirr. 90 Depletion depth / um 6000 5000 ¥ 4000 50 3000 40 30 50 100 150 200 250 Bias Voltage / V

Efficiencies before & after irradiation




NIEL DAMAGE (1X10¹⁵ N_{EQ}/CM²): HIT & IN-TIME EFFICIENCY

Mean hit detection efficiency of 99.5% for a fully depleted sensor

(Bias: 150 V | Mean threshold ~2ke)

Hit detection efficiency >99% in all front-ends and timing performance preserved

PERFORMANCE OVERVIEW

	LF-Monopix1	LF-Monopix2	
CMOS process	LFoundry	oundry 150 nm	
DMAPS type	Large collection electrode		
P-type substrate	CZ (>2 kΩ-cm)		
Signal MPV [ke-]	6 (85 μm)		
Pixel pitch [μm²]	250 x 50	150 x 50	
Column length [mm]	6.5	17	
Analog power [μW/pixel (mW/cm²)]	~45 (360)	~28 (370)	
ENC [e-]	150-200	90-130	
TH. Dispersion [e-]	~1000 → (Tuned) 100	~600-750→ (Tuned) 100	
Max. Bias Voltage [V]	260 - 300	460 - 500	
Irrad Level	NIEL, 1x10 ¹⁵ N _{eq} /cm ² (neutrons) [TH~2.3 ke ⁻]	NIEL, 1x10 ¹⁵ N _{eq} /cm ² (protons) [TH~2 ke-]	
Hit (in-time) Efficiency [%]	99.4 (in-time ~97)	99.5 (in-time >99)	

CONCLUSIONS & OUTLOOK

- Fully functional DMAPS in 150 nm CMOS process and large electrode pixel design
- Column-drain readout architecture in a 1.7 centimer-long column
- All signal processing and R/O electronics placed within a 150 x 50 μ m² pixel (without signs of digital coupling)
- Detection and in-time (25 ns.) efficiency > 99% after proton fluence of 1x10¹⁵ N_{eq}/cm²
- Current outlook:
 - **Next week:** Test beam (DESY) for samples exposed to higher NIEL fluence (2x10¹⁵ N_{eq}/cm²)
 - Second half of 2023: X-ray irradiation to assess TID tolerance of new front-ends

Thank you for your attention. Questions?

This project has received funding from the Deutsche Forschungsgemeinschaft DFG (grant WE 976/4-1), the German Federal Ministry of Education and Research BMBF (grant 05H15PDCA9) and the European Union's Horizon 2020 Research and Innovation programme under grant agreements No. 675587 (STREAM), 654168 (AIDA-2020) and 101004761 (AIDA-Innova).

The measurements leading to these results have partially been performed at the Test Beam Facility in DESY Hamburg (Germany), a member of the Helmholtz Association (HGF) and the E3 beam-line of the electron accelerator ELSA operated by the university of Bonn.

