

Simulation of Landau fluctuations on timing performance of LGADs

Jernej Debevc 42nd RD50 Workshop – June 22, 2023

Authors:

Jernej Debevc¹, Bojan Hiti¹, Alissa Shirley-Ann Howard¹, Gregor Kramberger¹, Igor Mandić¹, Petja Skomina¹

¹ Jožef Stefan Institute, Ljubljana, Slovenia

Motivation

- Simulations of electronics responses have usually been performed with sensor signals from uniform charge deposition
- Here we focus on the study of responses with signals induced from **non-uniform** charge deposition due to Landau fluctuations
- Goals:
 - Isolate and evaluate the contribution of Landau fluctuations to timing resolution for different gains and thicknesses and explore performance limits
 - Determine the contribution of Landau fluctuations to the timing resolution of HPK-P2 and recent C-GL LGAD prototypes
- Energy deposition simulated and studied with Geant4
- LGAD signals simulated with KDetSim

Geant4 simulations

- Spatial distribution of energy depositions simulated with Geant4
 - 4 GeV electrons
 - 1 GeV pions
- Maximum step size was shortened to lengths less than the sensor thickness
- Variable simulation step sizes (5 μm 50 μm) and sensor thicknesses (20 μm 100 μm)
- Statistics over 1000 events

Geant4 step size consistency validation

Distributions of deposited energy within sensitive region - Landau fit

- Choosing different maximum step sizes for Geant4 simulation gives consistent energy deposition distributions for the entire range of simulated step sizes
- Changes in distribution for increasing sensor thicknesses
 as expected

sensor thickness [µm]

KDetSim simulation

- Signal formation was simulated with KDetSim
 - IJS impact ionization model used
- Different configurations used (all unirradiated):
 - HPK-P2-W43 (V_{gl} = 50.5 V, V_{fd} = 60 V, V_{bd} = 240 V, 50 μ m, deep gain layer – Gaussian profile at 2.25 μ m)
 - Carbon gain layer (C-GL) sample ($V_{gl} = 24 V$, $V_{fd} = 35 V$, $V_{bd} = 170 V$, 50 µm, shallow gain layer Gaussian profile at 0.75 µm)
 - · Ideal case with saturated drift velocity
 - No gain

Convolution with electronics

Results

- 4 GeV electrons
- 50 µm sensor thickness
- 10 µm step size

Including electronics noise (jitter)

• Adding jitter gives the total timing resolution

$$\sigma_{\rm tot} = \sqrt{\sigma_{\rm Landau}^2 + \sigma_{\rm jitter}^2}$$

- Noise added to electronics responses for each simulated signal
- · Total timing resolution behaves as expected

Results

- Study of time resolution voltage dependence ٠ for the case $N_{eff} = 0 \rightarrow No$ gain
- Theoretical limit that can be achieved from • charge collection
- At lower voltages (i.e. smaller drift speeds) timing resolution degrades
- Residual non-zero resolution due to different • saturation velocities of electrons and holes
- 1 GeV pions •
- 50 µm sensor thickness •
- 10 µm step size •

- Effect of sensor thickness ٠
- LGAD gain adjusted (varying the gain layer doping) to achieve constant collected charge of 20 fC
- Best resolution for uniform field (no doping)
- Introducing a field gradient already worsens • performance
- Good agreement with measurements for ٠ LGAD sim
- ٠ 60 σ_{Lan} [ps] LGAD @ 20fC No gain, linear $E(\langle E \rangle = 1 \text{ V/}\mu\text{m})$ 50 No gain, $N_{\rm eff} = 0$ Measured* 40 30 1 • 20 10 0_Ò 20 40 60 80 100
- 10 µm step size

120

Sensor thickness [µm]

Results

- Study of time resolution voltage dependence for the case N_{eff} = 0 \rightarrow No gain
- Theoretical limit that can be achieved from charge collection
- At lower voltages (i.e. smaller drift speeds) timing resolution degrades
- Residual non-zero resolution due to different saturation velocities of electrons and holes
- 1 GeV pions
- 50 µm sensor thickness
- 10 µm step size

- Effect of sensor thickness
- LGAD gain adjusted (varying the gain layer doping) to achieve constant collected charge of 20 fC
- Best resolution for uniform field (no doping)
- Introducing a field gradient already worsens
 performance
- Good agreement with measurements for LGAD sim
- 60 σ_{Lan} [ps] LGAD @ 20fC No gain, linear $E(\langle E \rangle = 1 \text{ V/}\mu\text{m})$ 50 No gain, $N_{\rm eff} = 0$ Measured* 40 USCS 30 -ATLAS HGTD 20 Freiburg, IJS 10 ٥_Ď 20 40 60 80 100 120 Sensor thickness [µm]
- 10 µm step size

Conclusion

- Simulations of LGAD sensor signals for non-uniform charge deposition coming from Landau fluctuations
- Timing resolution obtained from spread of ToA from electronics responses (convolution with delta response of ALTIROC chip)
- For HPK-P2 sensor with 4 GeV electrons, a Landau fluctuation contribution of ~ 31 ps was observed; ~ 40 ps for C-GL sensors
- Without gain, the timing resolution limit is $\sim 5~\text{ps}$ for 50 μm sensor thickness and increases at low bias voltages
- Increasing the sensor thickness shows a corresponding increase of Landau fluctuation contribution and degrades LGAD timing performance