Development of 4H-SiC Low-Gain Avalanche Detector

Congcong Wang^{1,2}, **Xin Shi^{1,2}**, Ye He³, Keqi Wang⁴, Xiyuan Zhang^{1,2}, Kaibo Xie⁵ On behalf of RASER Team https://raser.team/

> ¹Institute of High Energy Physics, CAS ²State Key Laboratory of Particle Detection and Electronics, ³Nanjing University ⁴Liaoning University ⁵University of Science and Technology Beijing

> > The 42nd CERN RD50 workshop

2023-06-20

Why 4H-SiC?

Benefiting from the industrial investment of SiC Power electronic devices, the technology of SiC substrate and fabricating process develop fast.

Characteristic	Si	4H-SiC
Eg (eV)	1.12	3.26
Thermal conductivity	1.5	4.9
E _{breakdown} (V/cm)	0.5	3
Saturated electron velocity (cm/s)	1×10 ⁷	2×10 ⁷
ionization energy for e-h pair (eV)	3.64	7.8
displacement energy	13	21.8

- ✓ High radiation hardness
- ✓ Low dark current
- high temperature resistance
- ✓ High saturated carrier velocity -> fast response

Good time resolution of 4H-SiC detector

100 µm 4H-SiC PIN for MIPs (measurement)

3D 4H-SiC Detector for MIPs (simulation)

Challenge and solution of fast 4H-SiC detector

Goals

- Thicker active layer is required
- Achieve the carrier
 velocity saturated
 and low operate
 voltage

Key technologies

Appropriate gain due to low carrier multiplication coefficient of 4H-SiC? Achieve the typical doping concentration distribution in 4H-SiC LGAD

Epitaxial structure simulation of 4H-SiC LGAD

Intrinsic layer

- The total depletion voltage (V_{BD}) depends on the doping concentration (N_{gain}^{eff}) and thickness.
- □ The doping concentration is same, intrinsic layer is $100\mu m$, V_{BD} is

higher than 700V.

□ When the intrinsic layer is 50µm, the

total depletion voltage is less than

500V.

Epitaxial structure simulation of 4H-SiC LGAD

Real structure of 4H-SiC LGAD (SICAR1)

SICAR (SIlicon CARbide): 4H-SiC device for MIPs

Epitaxial structure

Secondary ion mass spectroscopy measurement results

Micro machining processes

• SICAR1 wafer

• Leakage current (Current limit: 105µA, measure at room temperature)

I-V characteristics of one detector is good, the leakage current is less than **50nA**. The performance of other detector needs to be optimized.

• Capacitance (Current limit: 105µA, measure at room temperature)

■ There is a gain, indicating that it is a LGAD structure. Effective doping concentration is consistent with the actual concentration. Gain layer depletion voltage and full depletion voltage match the design target.

• Depth of depleted zone

Epitaxial structure

The detector is not exhausted at 200V.

NJU 4H-SiC LGAD design

Summary & Plan

Summary:

- 1. SICAR 1 has a gain, indicating that it is a LGAD structure.
- The gain layer depletion voltage is about 70V and the full depletion voltage is between 500V and 600V. The leakage current is less than 50nA.
- 3. The effective doping concentrations of the gain layer and active layer are consistent with the actual concentration.

Plan:

- 1. Test and analyze charge collection efficiency and time resolution.
- 2. Optimize the structure and chip technology, to reduce the leakage current and increase the breakdown voltage.
- 3. Optimize ohmic contact properties and electric field distribution using two-dimensional materials.