42nd RD50 Workshop – 21st June 2023

Gain degradation study after neutron and proton irradiations in Low Gain Avalanche Diodes

E. Curras^a, M. Moll^a, A. la Rosa^a, F. Zareef^b,

^aSolid State Detector (SSD) Lab, CERN. ^bDepartment of Interactions and Particle Detection, AGH-UST Krakow. arXiv:2306.11760

fasih.zareef@cern.ch

Outline

- Motivation and challenges
- Low Gain Avalanche Diodes (LGADs)
- Devices under test
- Electrical Characterizations
 - Reverse Current Damage Coefficient
 - IV and CV Measurements
- Laser Characterizations
 - Gain Measurements
- Gain Layer Degradation Study
 - V_{GL} Extraction
 - Acceptor Removal Coefficient
- Summary and Future Work

Motivation

- To study the radiation damage of LGADs for the HL-LHC MIP timing detectors of CMS and ATLAS
- To study the comparison between radiation damage introduced by neutrons and high energy protons
- A very limited literature on the study of 24 GeV/c protons on the devices from HPK-P2 and CNM-12916
- Comparison of the sensors from different productions: HPK-P2 and CNM-12916

Electron – Ion Collider at BNL

EIC

The Need for New Timing Detectors

Pile-up is one of the major challenges for tracking at the HL-LHC

• Timing information will be used to disentangle the overlapping events

• Radiation tolerance up to $\sim 2.5 \times 10^{15} n_{eq} cm^{-2}$ for ATLAS – HGTD

and ~ $1.5 \times 10^{15} n_{eq} cm^{-2}$ for CMS – ETL is required

Time resolutions < 50ps per-hit for a MIP

Higher

Energy

The Need for New Timing Detectors

Pile-up is one of the major challenges for tracking at the HL-LHC

Timing information will be used to disentangle the overlapping events

• Radiation tolerance up to $\sim 2.5 \times 10^{15} n_{eq} cm^{-2}$ for ATLAS – HGTD

and $\sim 1.5 \times 10^{15} n_{eq} cm^{-2}$ for CMS – ETL is required

Time resolutions < 50ps per-hit for a MIP

FCC-hh

- Pile up mitigation ~ 1000
- Time resolution ~ 10 ps per-hit for a MIP
 - Much higher radiation tolerance $\sim 10^{17} n_{eq} cm^{-2}$!!!

The Need for New Timing Detectors

Pile-up is one of the major challenges for tracking at the HL-LHC

Timing information will be used to disentangle the overlapping events

• Radiation tolerance up to $\sim 2.5 \times 10^{15} n_{eq} cm^{-2}$ for ATLAS – HGTD

and ~ $1.5 \times 10^{15} n_{eq} cm^{-2}$ for CMS – ETL is required

Time resolutions < 50ps per-hit for a MIP

ATLAS-HGTD and CMS-ETL will be using LGADs as timing detectors

FCC-hh

- Pile up mitigation ~ 1000
- Time resolution ~ 10 ps per-hit for a MIP
- Much higher radiation tolerance $\sim 10^{17} n_{eq} cm^{-2}$!!!

Low Gain Avalanche Diodes (LGADs)

- Low Gain Avalanche Diode, a detector with:
 - Internal charge multiplication
 - Improved signal-to-noise ratio (SNR)
 - Improved timing capabilities (< 30ps) achievable with thin LGADs (50µm)
 - Low to moderate gain (a few 10s) provided by p⁺ multiplication layer

Gain depends on:

- Doping profile and concentration of the dopant in gain layer (GL)
- Bias voltage
- Temperature

CNM (Barcelona, ES), FBK (Trento,IT), **HPK (Japan),** IHEP-NDL and IME (China), Micron(UK), BNL(USA), CIS(Erfurt, Germany) ...

Devices Under Test

- HPK Prototype2:
 - 1.3 x 1.3 mm² pad-like LGADs with 48µm thick epitaxial layer.
 - Gaussian profile doping -> deep.
 - 150µm low resistivity support wafer
- CNM 12916:
 - 1.3 x 1.3 mm² pad-like LGADs with 42µm thick FZ wafer.
 - Narrow and highly doped implant, but also shallow.
 - 300µm low resistivity Czochralski support wafer
- Neutron irradiation took place in TRIGA-II Reactor, JSI Ljubljana and the fluences are 4e14, 8e14, and 1.5e15 n_{eq}/cm^{2.}
- 24 GeV/c Proton irradiation was carried out at IRRAD Facility, CERN and the fluences are 4.3e14, 1.18e15, and 1.55e15 n_{eq}/cm² (Hardness factor = 0.62)

Parameters of the LGADs used in this work

Sample	V_{dep} [V]	V_{gl} [V]	V _{bd} (20°C) [V]	C _{end} [pF]	d [µm]
HPK-P2	61.7	54.5	145	3.6	48
CNM12916	42.8	39.4	80-100	4.2	42

All devices were annealed after irradiation at 60°C for 80 minutes

Reverse Current Damage Coefficient (α)

- Volume considered:
 - **HPK2**: (1.3x1.3) mm² x 48μm
 - **CNM12916**: (1.3x1.3) mm² x 42μm
- Pad current measured after full depletion at 50V.

For Neutrons:

 $\alpha = 1.14 \times 10^{-18} \text{ A/cm}^{-3}$

For Protons:

 $\alpha = 1.11 \times 10^{-18} \text{ A/cm}^{-3}$

Reference:

 $\alpha = 1.11 \times 10^{-18} \text{ A/cm}^{-3}$ [2]

Electrical Characterizations

Preliminary results of the sensors before irradiations

(E. Curras, EP-R&D 2021) [3]

A set of devices from these were selected for irradiation

Leakage Current

Current – Voltage characteristics after irradiation, measured at T = - 20°C

- Pad current increases with fluence.
- Breakdown voltage increases with fluence, the samples can be operated at higher voltages.
- This is already an indication that the gain decreases with fluence.
- Depletion voltage of the gain layer decreases, easy to see in the CV curves (next slide)
- The impact of protons is greater than neutrons: can be seen in both CNM and HPK sensors.

Capacitance

Capacitance – Voltage characteristics after irradiation, measured at T = 10°C and freq = 1kHz.

- End capacitance does not change with fluence.
- Full depletion voltage increases with the increase in fluence.
- Depletion voltage of the gain layer decreases: indication of less active boron in gain layer.
- The impact of protons is greater than neutrons: can be seen in both CNM and HPK sensors.

LASER Characterizations

- Laser characterizations were carried out using Transient
 Current Technique (TCT) at SSD lab at CERN.
- Pulsed IR-Laser (1060nm) with 250ps pulse width.
- Laser intensity ~ 1 MIPs
- Calculation of gain was carried out using the following equation:

$$Gain [V] = \frac{CC_{LGAD}[V]}{CC_{PIN}[V \ge V_{FD}]}$$

Gain Measurements

TCT measurements taken at temp = - 20°C

- PINs, unirradiated LGADs and irradiated LGADs were measured under same conditions.
- A reduction in gain is observed with the increase in fluence.

Gain Measurements

TCT measurements taken at temp = - 20°C

- PINs, unirradiated LGADs and irradiated LGADs were measured under same conditions.
- A reduction in gain is observed with the increase in fluence.
- LGADs from HPK-P2 show greater resistance to irradiation as compared to CNM-12916.

Gain Measurements

TCT measurements taken at temp = - 20°C

- PINs, unirradiated LGADs and irradiated LGADs were measured under same conditions.
- A reduction in gain is observed with the increase in fluence.
- LGADs from HPK-P2 show greater resistance to irradiation as compared to CNM-12916.
- Impact of 24 GeV/c protons (normalized to 1 MeV neutrons) is more than twice as that of neutrons for both HPK-P2 and CNM-12916.

Extraction of V_{GL}

Three different methods to extract gain layer depletion voltage (V_{GL}) are used in this work

The IV method

- The derivate of the pad current w.r.t voltage gives a peak around V_{GL}
- The maxima of peak can be obtained by Gaussian / Lorentzian fitting

Extraction of V_{GL}

Three different methods to extract gain layer depletion voltage (V_{GL}) are used in this work

The IV method

The CV method

- Plotting 1/C² versus voltage
- The bend represents V_{GL}

Extraction of V_{GL}

Three different methods to extract gain layer depletion voltage (V_{GL}) are used in this work

The derivative method

The CV method

The TCT method

- Plotting charge collection versus voltage
- The bend represents V_{GL}

Summary **G**

Extraction of V_{GL}

• Three different methods to extract gain layer depletion voltage (V_{GL}) are used in this work

The IV method

The CV method

The TCT method

- Before irradiation, these methods are in good agreement with each other.
- After irradiation, the V_{GL} extraction gets tricky.
- We averaged out the values of V_{GL} obtained from all these methods.

$$V_{GL} = \frac{V_{GL}(IV) + V_{GL}(CV) + V_{GL}(TCT)}{3}$$

 GL fraction is calculated using the values of V_{GL} obtained by the methods explained in previous slide, where:

$$GL fraction = \frac{V_{GL}(\varphi)}{V_{GL}(0)}$$

 The gain layer depletion voltage at a given fluence is related to the acceptor removal coefficient 'c' by:

$$V_{GL}(\varphi) = V_{GL}(0) e^{-c\varphi}$$

 Acceptor removal coefficient can be obtained by fitting this equation on the V_{GL} curve versus fluence

GL fraction versus fluence

$$V_{GL}(\varphi) = V_{GL}(0) e^{-c\varphi}$$

- LGADs from CNM-12916 shows higher values of 'c' as compared to HPK-P2, irrespective
 of irradiation type.
- This shows that degradation of gain layer also depends on shape, position, and concentration of the GL doping profile

- 24 GeV/c protons introduce damages in gain layer almost 2.5 times higher than the neutrons, normalized to 1 MeV neutrons.
- 'c' value of LGADs from CNM-12916 is almost 1.8 times higher than the ones from HPK-P2 for both the proton and neutron irradiations.

c (10 ⁻¹⁶ cm ⁻²)	C_n	C _p	c_p/c_n
CNM-12916	6.91 ± 0.05	17.1 ± 0.77	2.475
HPK-P2	3.85 ± 0.24	9.51 ± 0.51	2.470
c_{CNM}/c_{HPK}	1.795	1.798	-

- 24 GeV/c protons introduce damages in gain layer almost 2.5
 times higher than the neutrons, normalized to 1 MeV neutrons.
- 'c' value of LGADs from CNM-12916 is almost 1.8 times higher than the ones from HPK-P2 for both the proton and neutron irradiations.

c (10 ⁻¹⁶ cm ⁻²)	C_n	c_p	c_p/c_n
CNM-12916	6.91 ± 0.05	17.1 ± 0.77	2.475
HPK-P2	3.85 ± 0.24	9.51 ± 0.51	2.470
c_{CNM}/c_{HPK}	1.795	1.798	-

- 24 GeV/c protons introduce damages in gain layer almost 2.5
 times higher than the neutrons, normalized to 1 MeV neutrons.
- 'c' value of LGADs from CNM-12916 is almost 1.8 times higher than the ones from HPK-P2 for both the proton and neutron irradiations.

c (10 ⁻¹⁶ cm ⁻²)	C_n	C_p	c_p/c_n
CNM-12916	6.91 ± 0.05	17.1 ± 0.77	2.475
HPK-P2	3.85 ± 0.24	9.51 ± 0.51	2.470
C _{CNM} /C _{HPK}	1.795	1.798	-

42nd RD50 Workshop – Montenegro

Disclaimer!
The sensors in literature are not from the same production batches

- 24 GeV/c protons introduce damages in gain layer almost 2.5 times higher than the neutrons, normalized to 1 MeV neutrons.
- 'c' value of LGADs from CNM-12916 is almost 1.8 times higher than the ones from HPK-P2 for both the proton and neutron irradiations.

c (10 ⁻¹⁶ cm ⁻²)	C_n	c_p	c_p/c_n
CNM-12916	6.91 ± 0.05	17.1 ± 0.77	2.475
HPK-P2	3.85 ± 0.24	9.51 ± 0.51	2.470
C _{CNM} /C _{HPK}	1.795	1.798	-

27/06/2023

26

Summary & Future Work

- Neutron and proton irradiated LGADs with different fluences from HPK-P2 and CNM-12916 were studied.
- The ratio of damage coefficient of protons to neutrons shows that 24 GeV/c protons damage the gain layer almost 2.5 times higher than the neutrons, when normalized to 1 MeV neutrons.
- CNM-12916 LGADs produced with a shallow gain layer doping profile presented more degradation than the HPK-P2 LGADs produced with a deep and Gaussian gain layer doping profile.
- The acceptor removal constants (for protons and neutrons) gave a value for the CNM-12916 LGADs ~ 1.8 times higher than in the HPK-P2 ones.
- Time resolution measurements will be carried out in the next step.
- In future, the impact of long-term annealing will be studied.
- The paper is submitted to JINST, here is the link: <u>arXiv:2306.11760</u>

References

- Ugobono, Sofia Otero. "SISSA: LGAD and 3D as Timing Detectors." <u>PoS (2019): 035.</u>
- 2. M. Moll. Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. PhD thesis (1999).
- 3. E. Curras. Low Gain Avalanche Detectors for timing applications in high energy physics. EP R&D 2021
- Jin, H. Ren, S. Christie, Z. Galloway, C. Gee, C. Labitan et al., Experimental Study of Acceptor Removal in UFSD, <u>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 983 (2020) 164611.</u>
- 5. Feng, X. Huang, C. Yu, X. Jia, S. Li, M. Li et al., Study of the Acceptor Removal Effect of LGAD, <u>IEEE Transactions on Nuclear Science 69</u> (2022) 2324.
- 6. Currás et al., Timing performance and gain degradation after irradiation with protons and neutrons of low gain avalanche diodes based on a shallow and broad multiplication layer in a float-zone 35 µm and 50 µm thick silicon substrate, <u>Nuclear Instruments and Methods in Physics</u>

 <u>Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2023).</u>
- Howard et al., LGAD measurements from different producers, in <u>37th RD50 Workshop, Zagreb, 2020.</u>
- 8. E. Gkougkousis, Acceptor removal Radiation Hardness and breakdown, in 36th RD50 Workshop, Geneva, 2020.

Thank you for your attention!