Design strategies towards a small pixel size in a large DMAPS prototype in a 150 nm CMOS process

Tianyang Wang
On behalf of Bonn/CPPM/IRFU LFoudry DMAPS development team
- Review of LF chips and their design strategy

- LF-Monopix1 pixel design

- LF-Monopix2 pixel design

- Outlook for smaller pixel size

- Conclusion
LFoundry DMAPS development line

Hybridized concept ("smart pixel")

Fully monolithic concept

2014 2016 2020

wangty@zjlab.ac.cn
The overall design strategy of LF-Monopix chips

• Inherit the **know-how** from CCPD_LF & LF-CPIX
 – Sensor layout mimicking the standard planar sensor
 – Verified pixel AFE and configuration circuit

• **Very conservative** on circuit design
 – Use well-know and robust circuit structures
 – Very careful shielding scheme
 – Post layout verification is very important

• As a result, robust design has priority over small pixel pitch
 – LF-Monopix1: pixel size is the same as FE-I4 for historical reasons
 • 50 μm × 250 μm gives us margin to make some “paranoid” efforts on the pixel design
 – LF-Monopix2: pushing the pixel size to the limit would need too many (new) design changes
 • A conservative choice was made: 50 μm × 150 μm
LF-Monopix1 pixel design
Design considerations: sensor geometry

- Key sensor layout dimensions inherited from previous active and passive pixel chips to avoid surprises on sensor performance (breakdown, charge collection, capacitance, etc.)
 - Width of P-stop (implemented with PWELL)
 - Distance between P-stop and charge collection electrode
 - Over-hang structures above P-stop (not shown in the figure)

- Charge collection electrode is 30 μm × 230 μm
 - only ~50% of the total pixel area is available for circuit implementation
Design considerations: sensor capacitance

- Capacitance between circuit P-well to the inner wall of charge collection node is not small
 - In-pixel circuit is placed “far away” from vertical N wall
 - Even smaller area “reserved” for circuit if one wants to avoid this fringe capacitance

“Plate” capacitance

Fringe capacitance

Tomasz Hemperek

2023/6/21

wangty@zjlab.ac.cn
Design considerations: xtalk

- Example: for $C_{par} = 100 \text{ fF}$, $dV = 1 \text{ mV} \Rightarrow Q_{crosstalk} = 625 \text{ e}^-$
 - Junction between DNWELL and PWELL/PSUB
 - Minimized circuit area => custom made digital logic
 - Stable gndd => minimize transient current due to digital switching
 - Parasitic from metal routing
 - Good shielding + fully differential signals for data and control lines
Design considerations: metal system

- Extensive shielding especially for digital column signals
 - Shielding layer under signal lines
 - Shielding between two close parallel column signal lines
- Column signal routing takes quite some space
 - Local routing: M1 & 2
 - Shielding layer: M3 & 4
 - Column signal
 - Single-ended: M5
 - Differential: M4 & 5
 - PG: MF & MT
 - As wide as possible

Extensive post layout simulation for both pixel and whole column to identify coupling sources
- Column post layout simulation is time consuming and needs proper tool usage
- One can never be too careful

BCID & Column data bus ~ 55μm
Xtalk measured in LF-Monopix1

- CSA output disturbance in correlation with “Read”
 - “hidden” in the noise floor => visible after “averaging”
 - Due to a flaw in the shielding scheme using vddd

Doubts existed even among ourselves for such a large electrode DMAPS design, but the chip ended up nicely => Prove a good performing large electrode DMAPS chip with complicated pixel circuit for the first time
LF-Monopix2 pixel design
LF-Monopix2: towards a smaller pixel

- Key sensor geometries kept the same
 - We did not want to take risks before new possibilities being carefully studied
 - Max. ~50% pixel area for circuit
- Time stamp reduced from 8-bit to 6-bit
 - Should be careful about data loss @ high rate
- Digital logic further optimized for smaller area
 - But only limited improvement could be made

The total circuit area adds up to ~ 1500μm² which defines the ultimate pixel area with the existing circuit design
LF-Monopix2: towards a smaller pixel

- Remove some overdoing in LF-Monopix1
 - Single-ended signaling used for “Read” & “Freeze” => good shielding suffices
 - No shielding between lines of column data bus => need careful simulation
- Fix the “Read” xtalk in LF-Monopix1
 - Fix was proven effective by measurements

- Local routing: M1 & 2
- Shielding layer: M3 & 4
- Column signal
 - Single-ended: M5
 - Differential: M4 & 5
- PG: MF & MT
 - As wide as possible
LF-Monopix2: towards a smaller pixel

- Many tedious full column post layout simulation to ensure signal integrity

Signal slew & skew along the column

Xtalk and operation speed of column data bus

IR of PG along the column

Line width, spacing & shielding

Metal width and layers used for PG

Influence minimum pixel pitch

~ 15 mV

~ 16 mV

wangty@zjlab.ac.cn
Outlook to a smaller pixel size

- Squeeze the sensor structure
 - Slimmer P-stop => limited to 1.5μm from foundry design rules
 - Smaller gap between charge collection node & P-stop
 - Capacitance to P-stop?
 - Breakdown behavior?

- Smaller gap between N “wall” and circuit P well
 - “Fringe” capacitance

- Column line routing
 - Share lines between two neighboring pixel columns
 - More complex routing within the pixel
 - Larger line load => signal skewing

- Narrower PG metal => IR drop

H. Krueger, doi: 10.1088/1748-0221/16/01/P01029

wangty@zjlab.ac.cn
Conclusions

- LF-Monopix chip series is a nicely performing large electrode DMAPS design
 - Demonstrate large electrode DMAPS with complicated in-pixel circuitry
 - Chip performance verified in large scale matrix
- A smaller pixel (50 μm × 150 μm) achieved in LF-Monopix2
 - Not an ultimate small pixel, but a robust pixel with conservative design strategy
 - Performance improvement over LF-Monopix1 verified in measurement
- The ultimate pixel size calls for very careful studies on different aspects
 - May require trade off breakdown, pixel capacitance, xtalk, circuit robustness, etc.