

Latest Testbeam Results of RD50-MPW3 and Design of RD50-MPW4

Patrick Sieberer, on behalf of the RD50 CMOS working group

- Previous Talk: *Timing performance of the RD50 HV-CMOS*
 - <u>Click</u>
 - Introduction of the project and sensor can be found there
- Relevant talks from last meeting:
 - Initial testbeam measurements and setup: <u>Click</u>
 - Guard ring and biasing: <u>Click</u>

RECAP OF PREVIOUS RESULTS

- Testbeam in October 2022 at CERN SPS
 - H6B (PPE 156) in the north area
 - 7 days of data taking
- Beam: 120GeV "H6 mix"
 - Electrons, pions, ...
 - Beam spot ~9mm
- Recorded data: around 16.2M Events
 - x10 = 160M tracks
 - track multiplicity of around 10, "pile-up"
 - Without timing and spatial cuts
 - Divided into 36 runs of ~30 min each

Single plane of telescope (pixel pitch18.4 x 18.4um)

lew

RD50-MPW3 x-Direction

RD50-MPW3 y-Direction

Expected binary resolution: pitch / $\sqrt{12} = 18 \mu m$

Overflows shifted	Matched hits	Efficiency
-2	568	0.53%
-1	1439	1.34%
0	8540	7.93%
1	14869	13.81%
2	19033	17.67%
3	11106	10.31%
4	2879	2.67%
5	1054	0.98%

Sum: 55.24%. Total Efficiency: 55.24% * 0.93 = **51.4%**

- Uncounted overflows lead to time shifts within the data set
 - -1 overflow = 3.2 ms
 - Cannot be considered within one analysis run as an event of specific time
 - Multiple analysis runs on the same data set
 - All time shifts added for total efficiency
 - Probability of overlapping time bins subtracted

Observed Problems

Plain noise measurement of RD50-MPW3 (No testbeam data)

Huge noise observed

- Lower half of the matrix masked
- Calibration difficult
- High threshold needed
 - Also seen in cluster size
 - <u>Reason for bad efficiency?</u>
- Suspicion: Crosstalk from the digital periphery

Minor Timestamp problem

- Timestamping incorrect at 40MHz
 - Need to slow down to 20MHz
 - Known and fixed before testbeam

SIMULATIONS OF RD50-MPW3 PROBLEMS

- Observed: Incorrect timestamps when running at 40MHz
 Reported last meeting
- Model and simulate 'full' timestamp lines of the matrix
 - PULLDOWN signal: Discharge TS line
 - READ signal: Write (charge) TS to line

- cPara = parasitic capacitance to next line
 - Set to 0 (shielding lines)
- cGND = parasitic capacitance to ground
 - Varied (value not known)
 - 200fF
- rPara = resistance of readout line
 - Set to 5 Ohms (little influence)

Thanks to Bernhard Pilsl for the plot

Transient Response

Suspicion: Pulldown (PD) signal not properly discharging timestamp (TS) line -> PD is long enough

READ signal – 20MHz

Transient Response

ÖAW

Suspicion: Read (RD) signal not long enough to charge TS line -> RD is long enough for 20MHz or 50ns

READ signal – 40MHz

Transient Response

Suspicion: Read (RD) signal not long enough to charge TS line -> RD is <u>barely</u> long enough for 40MHz or 25ns

READ signal – high GND coupling ÖAW

Transient Response

Thu Jun 1 16:48:47 2023 1

Suspicion: Higher coupling capacitance to ground increases charge time

-> RD is <u>not</u> long enough (for 25ns case)

-> This is what seems to happen in RD50-MPW3

21.06.2023

- High noise observed in lower part
 - Suspicion: coupling of digital noise from the periphery
- Simulation for noise dependence on row number
 - 1. Connect only one pixel to analog readout line (SF_OUT) (parasitic extraction possible)
 - 2. Mimic digital noise on the ground
 - 3. Probe SF_OUT line
 - 4. Repeat for various row positions of the pixel on the SF_OUT line

- >100 mV noise for bottom pixel possible
- Mimics what is measured

Thanks to Chenfan Zhang for the plots

- AC coupling unlikely, due to shielding lines (studied during design phase)
 - No typical crosstalk between lines
 - Detailed look at design: SFOUT buffer connected directly to <u>digital</u> power by mistake

COMPOUT Noise

Noise causes false hits (measured after the comparator) for bottom pixels -> This is what seems to happen in RD50-MPW3

DESIGN RD50-MPW4

- Readout of pixels configurable
 - PD and RD signals can be delayed and stretched
 - Mitigate Timestamp issue
- Debug outputs removed
 - Everything working fine in RD50-MPW3
- External control removed
 - Everything working fine in RD50-MPW3
- SERIN/SEROUT pin positions switched
 - Easier routing when connected to matrix

ы Карана Interest Fix – Separate Grounds ÖAW

- Connect analog ground instead of digital ground to SFOUT buffer to reduce noise
- -> No false hits seen in simulation anymore

- Talk by Sinuo Zhang at the last workshop: <u>click</u>
- Breakdown approaching 400V or higher for the 1.9 kOhm substrate resistivity
 - Compared to ~150V now

n-ring for edge biasing (next slides)

Thanks to Sinuo Zhang for the plot

Moving from biasing via p-stop implant to edge or backside bias

Optional, p-stop implants still fabricated, can be left floating

- II) Edge bias with floating p-stop: -HV at (c)
- Potential drop (3), much larger distance (across entire periphery!)
- Large Floating PW suppresses potential
- Biggest part of potential drop still (1)

III) Edge bias with floating p-stop and biased N-ring at 0V: -HV at (c)

- Potential drop (2), consist of 2 parts
- Guard ring layout has huge effect
- Large Floating PW and p-stop can still cause potential drop

Thanks to Sinuo Zhang for the plot

a

Further Changes in RD50-MPW4:

- Large floating PW removed
- More space between matrix and edge due to new guard ring (including new pads)
- Buffer sizes in periphery decreased (less space)
 - RD50-MPW3 and RD50-MPW4 about the same area, but a bit different shape

- Very first large-scale testbeam at CERN conducted by the group
 - Spatial resolution meets theory predictions
 - Noise Problem observed and fixed in next submission
 - Efficiency loss most likely originating from noise
- Design of RD50-MPW4 finished
 - Mitigating noise and timestamp bug
 - frontside and backside (new!) biased samples
 - Submitted in May, expected in November
- RD50-MPW3 samples irradiated, distribution ongoing
- Preparation for *next testbeam at DESY in July* ongoing

This is my last contribution to this community, as I move to chip development for photon science – It was a pleasure to work with all of you, thank you very much for the last years.

BACKUP

- Baseline shift measured if multiple pixels are enabled
 - Also found in simulation
 - Ignored for the measurement, as it's not severe
- Behavior gone for separated grounds

Event Building