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Motivation

• Finely segmented silicon tracking detectors are the core of particle physics experiments

• Drivers: fabrication of large areas – cost, power consumption, material budget, 
hybridization technology…

• Excellent developments demonstrated in thin, large-area Si CMOS detectors, such as ALICE ITS3!

• Increasing demand also for good timing resolution and potentially energy resolution

➢ Could other materials have an advantage over Si in some areas?

• Ingot-based fabrication is expensive and time-consuming, not conveniently available for 
many materials

➢ Thin film deposition methods provide access to a wider selection of insulators and semiconductors, 
by physical or chemical vapor deposition techniques from liquid or gas phase

➢ Including epitaxial Si! ☺

• In the future: cost-effective deposition of thin layers, processing of integrated circuitry, on 
flexible substrates?

• Initial study – comparison of Si, InP, CdTe and diamond single pad sensors – conducted 
earlier by S. Kim and J. Metcalfe

J. Metcalfe et al, Potential of Thin Films for use in Charged Particle 
Tracking Detectors, arXiv:1411.1794

S. Kim et al, Thin film charged particle trackers, arXiv: 2209.08149
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Other semiconductor materials

• This study: focus on Indium Phosphide
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Device fabrication

• Single- and multipad devices fabricated by 
S. Kim at Argonne National Lab on 
commercial 2” InP:Fe wafers of 350 µm 
thickness

• Both sides 10 nm / 100 nm Cr / Au

• Front side electrode design by e-beam 
evaporation and lift-off of patterned 
photoresist

• Backside sheet metallization by sputter 
deposition

➢ Single pad devices: 2x2 mm, one guard ring 
(100 µm) – half of the devices with a 150 
µm optical opening

➢Multi-pad arrays:  25 pads, each 200x200 
µm, 50 µm gap
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CV-IV characterization

• Capacitance for 2x2 mm pad: ca. 2 pF
• Leakage currents higher than in Si, on the µA/mm2 

scale
• Relatively symmetrical in polarity
• Initially almost Ohmic behavior, then soft increase after 

400 V
• No exponential breakdown before 600 V

• Some samples exhibit rising capacitance and higher 
initial leakage current: apparently concentrated 
around a specific area on the wafer, close to a cut 
line
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Single-pad devices

• 638 nm red laser, x-y scanning 
stage (Particulars)

• Laser intensity adjusted manually 
to obtain 20 – 30 mV signal

• No signal from the IR laser even at 
high intensities

• Beta source: Sr-90

• Known HPK Silicon LGAD as 
trigger and reference

Sensor bonded to 1-ch UCSC fast readout board 
with 470 Ω transimpedance amplifier, plus external 
20dB RF amplifier

Z. Galloway et al 2019 



Single-pad: laser

• Scanning over the central region of 
the device: contour of the optical 
opening well visible

• Strong gradient in signal maximum 
amplitude towards edge of the 
opening: not improved in refocusing

• Fast signals!

200 V
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Single-pad: laser, bias voltage polarity

• Changed to a different HV voltage supply: bias with 
negative, or positive backside voltage i.e. signal primarily 
from drifting electrons
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• Early saturation of hole drift velocity?
• Electrons: larger signals with long tail

➢ Could be caused by charge multiplication / 
gain holes?
➢Slow detrapping from defects in the bulk?



Sr-90 beta electrons: signals

• Practically independent of bias voltage polarity

➢Expected for homogeneous bulk and unsegmented single-pad electrode

• Comparatively small signal, around 15 mV, but fast

➢Similar, to laser signal from assumed hole drift, although a bit lower 

• Decline after ca. 400 V

➢Similar to laser signal
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Sr-90 beta electrons: rise time and timing resolution

• Rise time independent of bias voltage, down to 250 ps after 
150 V

• Excellent timing resolution: 33 ps reached between 300 
and 400 V
• Despite 350 µm-thick device, no special gain layer, relatively small signal!
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Multipad array: laser testing

• Same red laser, same intensity as for single pads

• + 250 V backside bias

• Sensor mounted on 16-ch Fermilab readout board
➢ Remaining channels and guard ring originally planned to be grounded, but not feasible 

due to constrained space for wirebond loops – left floating

• Reading out 4 channels at a time

• Area A: adjacent pads

• Area B: larger area, finer granularity
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Area A: adjacent pads

• Large pulses close to pad

• Notable decrease in signal amplitude 
when charge is injected between pads 
– areas of lower efficiency even with 
only 50 µm inter-pad distance

• Inverted signal when charge is injected 
at neighboring pad (also seen 
relatively far away)

1211

109
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Area A: adjacent pads

• g
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Area B: larger area, finer granularity

• Main signal is not shared far 
away: limited to < 50 µm

• Opposite-polarity signal 
observed along the 
neighboring pads -
detectable for longer 
distance 
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Area B: larger area, finer granularity
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Amplitude profiles

Area B
Area A
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• Main and opposite-polarity signals along one line across pads:

➢Opposite-polarity signal can reach up to 40-50 % of main signal amplitude

➢Mirrors the profile of the next pad’s pulse maximum 

➢Gap between pads recognizable

Center pad not 
connected



Polarity!

• In fact, large signals are also observed at negative backside bias! This is very 
different from the behavior of the single-pad sensor 

➢Weighting field? Enhanced lateral drift of charges between pads?

• Better charge collection but worse resolution of features for negative bias

+250 V -250 V 
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X-ray test beams

• X-ray test beams were conducted at CLS, 
Canada and Diamond, UK 

• Shown here: two InP single-pad samples in 
CLS beam, 15 keV, diameter ca. 40 µm
➢ Low bias voltage data has been analysed to 

study the response, response uniformity, and 
bias dependence

➢ Loss of features in scans with increasing 
voltage, and ‘flares’ at the edge of the sensors 
under investigation

J.
 O

tt
 e

t 
al

, I
n

P
 s

en
so

rs
 f

o
r 

th
in

-f
ilm

 d
et

ec
to

rs

18

courtesy L. Poley and other collaborators



Summary and outlook

• Indium phosphide is a promising thin-film detector material: single pad and 
multipad arrays were fabricated on bulk material and studied with several 
methods

• In particular, high electron mobility leads to very fast signals and great 
timing resolution even at lower amplitude and in a thick detector

• Going towards a thinner bulk (or an actual thin film) could reduce both drift 
time and trapping, and start internal charge multiplication at lower 
absolute bias voltage - on the other hand, if there is no gain mechanism,  
an acceptable signal level might not be reached with a thinner sensor

• Next steps: 
➢Testing of devices at Fermilab 120-GeV proton beam
➢ SCIPP Alibava setup was in repair, will be set up when received back
➢ Simulations with Allpix2, TCAD
➢Evaluate radiation hardness: samples to be sent to JSI/Ljubljana for neutron 

irradiation; potential irradiation campaigns with protons and gamma rays 
depending on availability

➢Thin film deposition with Argonne CVD setup..? Other materials, e.g.
amorphous Se, available at SCIPP?
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Thank you!

J. Ott et al, InP sensors for thin-film detectors 20
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Charge collection

• C.C. based on beta electrons
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