

Characterization of InP sensors for future thin-film detectors

<u>Jennifer Ott</u>^a, E.R. Almazan^a, S. Kim^{b,c}, T. Affolder^a, V. Fadeyev^a, J. Metcalfe^b, M. Hance^a, J. Nielsen^a

- a) Santa Cruz Institute for Particle Physics
 - b) Argonne National Laboratory
 - c) University of Illinois at Chicago

42nd RD50 Workshop, 20.-23. June 2023

*jeott@ucsc.edu

Motivation

- Finely segmented silicon tracking detectors are the core of particle physics experiments
- Drivers: fabrication of large areas cost, power consumption, material budget, hybridization technology...
 - Excellent developments demonstrated in thin, large-area Si CMOS detectors, such as ALICE ITS3!
- Increasing demand also for good timing resolution and potentially energy resolution
 - > Could other materials have an advantage over Si in some areas?
- Ingot-based fabrication is expensive and time-consuming, not conveniently available for many materials
- Thin film deposition methods provide access to a wider selection of insulators and semiconductors, by physical or chemical vapor deposition techniques from liquid or gas phase
 - ➤ Including epitaxial Si! ©
- In the future: cost-effective deposition of thin layers, processing of integrated circuitry, on flexible substrates?
- Initial study comparison of Si, InP, CdTe and diamond single pad sensors conducted earlier by S. Kim and J. Metcalfe
 - J. Metcalfe et al, Potential of Thin Films for use in Charged Particle Tracking Detectors, arXiv:1411.1794
 - S. Kim et al, Thin film charged particle trackers, arXiv: 2209.08149

Other semiconductor materials

This study: focus on Indium Phosphide

TABLE I

Properties of Semiconductor Materials at 25°C TABLE I (Continued) Band-Melting Resistivity Electron Electron Hole Hole $\mu\tau(e)$ $\mu \tau(h)$ Dielectric Point Atomic Density gap Knoop Crystal (25°C) Mobility Lifetime Mobility Lifetime Product Product Material Number g/cm3 eV °C Hardness Structure Ionicity Constant cm2/V · sec cm²/V cm2/V Ω-cm cm2/V · sec sec. sec. 32 5.33 0.67 958 692 Cubic 16 2.96 50 3900 $>10^{-3}$ 1900 1×10^{-3} >1 >1 Ge 2×10^{-3} $>10^{-3}$ 480 >1 ≈1 Si 14 2.33 1.12 1412 1150 Cubic 11.7 3.62 up to 104 1400 3.3×10^{-3} 2×10^{-4} CdTe 48, 52 6.2 1.44 1092 45 Hexagonal 0.61 11 4.43 109 1100 3×10^{-6} 100 2×10^{-6} 5×10^{-8} 6×10^{-6} 5.0* 1011 1350 10-6 120 1×10^{-3} 48, 30, 52 1.5 - 2.21092-1295 CdZnTe ≈6 5.5** 10^{8} 10-6 75 7.2×10^{-4} 7.5×10^{-5} CdSe 48, 34 5.81 1.73 >1350 Hexagonal 0.6 10.6 720 ≈10-4 CdZnSe 48, 30, 34 1.7 - 2.71239-1520 ≈ 5.5 10-4 1013 10-6 10-5 4×10^{-5} HgI_2 80, 53 6.4 2.13 250 (127†) < 10 Tetragonal 0.67 8.8 4.2 100 1010 9×10^{-5} TlBrl 81, 35, 53 7.5 2.2 - 2.8405-480 40 Cubic 10-7 8×10^{-5} 4×10^{-6} 4.2 10^{7} 8000 10 - 8400 GaAs 31, 33 5.32 1.43 1238 750 Cubic 0.23 12.8 1011 7×10^{-5} 49,53 5.31 2.01 351 27 Orthorhombic 0.8 26 lnl 9×10^{-5} 31, 34 4.55 2.03 960 0.53 8 4.5 75 5×10^{-7} 45 2×10^{-7} 3.5×10^{-5} GaSe Hexagonal 104 0 5.5 13.25 2000 10^{-8} 1600 <10-8 2×10^{-5} $<1.6 \times 10^{-5}$ 3.51 5.4 4027 Cubic diamond 6 29.8 10^{12} 2.5×10^{-6} 1.6×10^{-5} 1.5×10^{-6} 81, 35 480 12 0.81 6.5 TIBr 7.56 2.68 Cubic 10^{-6} 4.9 10^{12} 2 8×10^{-6} PbI₂ 82, 53 6.2 2.32 402 <10 Hexagonal 0.8 10^{7} 4600 150 $<10^{-7}$ 4.8×10^{-6} $< 1.5 \times 10^{-1}$ 4.2 1.5×10^{-9} InP 49, 15 4.78 1.35 1057 535 Cubic 0.38 12.5 7×10^{-7} 1.4×10^{-6} 7×10^{-5} 30, 52 5.72 2.26 1295 0.62 9.7 7.0** 1010 4×10^{-9} 100 ZnTe Cubic 1×10^{-6} $<1 \times 10^{-7}$ 80, 35, 53 6.2 2.4-3.4 229-259 5×10^{13} HgBrI 14 Orthorhombic

0

0

0.01

0.58

11.7

6.6

11

11.6

8.1

4

7

6.5**

7.0**

7.8**

9.0**

5.05

6.47

5.5**

8.0**

 10^{12}

 10^{12}

 $< 10^{4}$

1012

.005

10

120

300

300

100

 $400(\alpha)$

 6.8×10^{-9}

10-6

10-9

.005

.14

120

50

400

Temperature

Semiconductors for Room

Nuclear Detector Applications

Note: Materials are listed in order of decreasing $\mu\tau(e)$ at room temperature.

14

34

5, 15

31, 15

48, 16

14, 6

13, 51

82, 8

83, 53

30, 34

2.3

4.3

2.9

4.13

4.82

3.2

4.26

9.8

5.78

5.42

1.8

2.3

2

2.24

2.5

2.2

1.62

1.73

2.58

1.9

d1400

1750

1477

886

408

4700

Cubic

Cubic

Cubic

Cubic

Cubic

Hexagonal

Hexagonal

a-Si

a-Se

BP

GaP

CdS

SiC

AlSb

PbO

Bil₃

ZnSe

 6.8×10^{-8}

 5×10^{-9}

 2×10^{-8}

SEMICONDUCTORS

AND SEMIMETALS

 1.4×10^{-7}

 4×10^{-6}

^{*}Estimated for 20% Zn.

^{**} Estimated.

[†] Solid/solid phase transition.

Device fabrication

- Single- and multipad devices fabricated by S. Kim at Argonne National Lab on commercial 2" InP:Fe wafers of 350 μm thickness
- Both sides 10 nm / 100 nm Cr / Au
 - Front side electrode design by e-beam evaporation and lift-off of patterned photoresist
 - Backside sheet metallization by sputter deposition
- Single pad devices: 2x2 mm, one guard ring (100 μm) – half of the devices with a 150 μm optical opening
- Multi-pad arrays: 25 pads, each 200x200 μm, 50 μm gap

CV-IV characterization

- Capacitance for 2x2 mm pad: ca. 2 pF
- Leakage currents higher than in Si, on the μA/mm2 scale
 - Relatively symmetrical in polarity
 - Initially almost Ohmic behavior, then soft increase after 400 V
 - No exponential breakdown before 600 V
- Some samples exhibit rising capacitance and higher initial leakage current: apparently concentrated around a specific area on the wafer, close to a cut line

Single-pad devices

Sensor bonded to 1-ch UCSC fast readout board with 470 Ω transimpedance amplifier, plus external 20dB RF amplifier

- 638 nm red laser, x-y scanning stage (Particulars)
- Laser intensity adjusted manually to obtain 20 – 30 mV signal
- No signal from the IR laser even at high intensities

- Beta source: Sr-90
- Known HPK Silicon LGAD as trigger and reference

Z. Galloway et al 2019

Single-pad: laser

- Scanning over the central region of the device: contour of the optical opening well visible
- Strong gradient in signal maximum amplitude towards edge of the opening: not improved in refocusing
- Fast signals!

Single-pad: laser, bias voltage polarity

 Changed to a different HV voltage supply: bias with negative, or positive backside voltage i.e. signal primarily from drifting electrons

- Early saturation of hole drift velocity?
- Electrons: larger signals with long tail
 - ➤ Could be caused by charge multiplication / gain holes?
 - ➤ Slow detrapping from defects in the bulk?

Sr-90 beta electrons: signals

- Practically independent of bias voltage polarity
 - > Expected for homogeneous bulk and unsegmented single-pad electrode
- Comparatively small signal, around 15 mV, but fast
 - Similar, to laser signal from assumed hole drift, although a bit lower
- Decline after ca. 400 V
 - ➤ Similar to laser signal

Sr-90 beta electrons: rise time and timing resolution

- Rise time independent of bias voltage, down to 250 ps after
 150 V
- Excellent timing resolution: 33 ps reached between 300 and 400 V
 - Despite 350 μm-thick device, no special gain layer, relatively small signal!

Multipad array: laser testing

- Same red laser, same intensity as for single pads
- + 250 V backside bias
- Sensor mounted on 16-ch Fermilab readout board
 - ➤ Remaining channels and guard ring originally planned to be grounded, but not feasible due to constrained space for wirebond loops left floating
- Reading out 4 channels at a time
- Area A: adjacent pads
- Area B: larger area, finer granularity

Area A: adjacent pads

- Large pulses close to pad
- Notable decrease in signal amplitude when charge is injected between pads

 areas of lower efficiency even with only 50 µm inter-pad distance
- Inverted signal when charge is injected at neighboring pad (also seen relatively far away)

Area A: adjacent pads

Area B: larger area, finer granularity

- Main signal is not shared far away: limited to < 50 μm
- Opposite-polarity signal observed along the neighboring pads detectable for longer distance

J. Ott et al, InP sensors for thin-film detectors

Area B: larger area, finer granularity

Amplitude profiles

- Main and opposite-polarity signals along one line across pads:
 - > Opposite-polarity signal can reach up to 40-50 % of main signal amplitude
 - > Mirrors the profile of the next pad's pulse maximum
 - ➤ Gap between pads recognizable

Polarity!

- In fact, large signals are also observed at negative backside bias! This is very different from the behavior of the single-pad sensor
 - ➤ Weighting field? Enhanced lateral drift of charges between pads?
- Better charge collection but worse resolution of features for negative bias

X-ray test beams

courtesy L. Poley and other collaborators

- X-ray test beams were conducted at CLS, Canada and Diamond, UK
- Shown here: two InP single-pad samples in CLS beam, 15 keV, diameter ca. 40 μm
 - ➤ Low bias voltage data has been analysed to study the response, response uniformity, and bias dependence
 - ➤ Loss of features in scans with increasing voltage, and 'flares' at the edge of the sensors under investigation

Summary and outlook

- Indium phosphide is a promising thin-film detector material: single pad and multipad arrays were fabricated on bulk material and studied with several methods
- In particular, high electron mobility leads to very fast signals and great timing resolution even at lower amplitude and in a thick detector
- Going towards a thinner bulk (or an actual thin film) could reduce both drift time and trapping, and start internal charge multiplication at lower absolute bias voltage - on the other hand, if there is no gain mechanism, an acceptable signal level might not be reached with a thinner sensor

Next steps:

- > Testing of devices at Fermilab 120-GeV proton beam
- > SCIPP Alibava setup was in repair, will be set up when received back
- ➤ Simulations with Allpix2, TCAD
- ➤ Evaluate radiation hardness: samples to be sent to JSI/Ljubljana for neutron irradiation; potential irradiation campaigns with protons and gamma rays depending on availability
- ➤ Thin film deposition with Argonne CVD setup..? Other materials, e.g. amorphous Se, available at SCIPP?

Charge collection

• C.C. based on beta electrons

