

Advanced Additive Manufacturing of Foams for High-Power Laser Interactions at ELI Beamlines

Tomáš Laštovička

RG50 Workshop, 23rd June 2023

The E3 experimental hall is aimed at the study of plasma physics and ultra-high intensity interactions

P3 = Plasma Physics Platform

It will receive high-power high-rep-rate lasers:

- L3(HAPLS) 1PW (30J, 30fs, 10 Hz) currently 450 TW at 3.3 Hz
- L4f(ATON) 10PW (1.5kJ, 150fs) 1 per 2-3 minutes, can be also used in ns configuration (L4n, currently being commissioned)
- L2(DUHA) 80TW (2J, 25 fs, 50 Hz)

50 m³, fast pumping/venting times if needed

Currently mostly fusion and astrophysics research.

- Users can take a tour inside the experimental chamber
 - Useful for a general view of what is possible inside the chamber.
 - Centimeter precise measuring tools are also available.

https://my.matterport.com/show/?m=fkP3VjGbYyq

- Low density solid targets have to be inhomogeneous/porous they have to contain spaces inside
- Various structures are possible closed, semi-closed, open cells, (foil and fiber-like structures)
- Generally small pores are required, sub-µm scale
- Lower density → larger pores
- Polyacrylates TMPTA C₁₅H₂₀O₆ by W. Nazarov
- Proprietary UV-curable photoresists for AM manufacturing
- Targets may be doped with higher Z elements, either homogeneous dispersion or clusters

Parameters of various low density materials K. Nagai *et al.*, Phys. Plasmas **25** (2018) 030501

3D Additive Manufactured Targets

Advantages

- Full control over the structure/geometry
- Wide range of target designs
- Structural stability
- Various low density (~8.5 mg/cm³) targets designed and tested for stiffness and stress
- Beam periodic octet truss selected for printing and first experiments
 - Cylindrical shape (1000 µm diameter, 600 µm depth)
 with a supporting but hollow frame

Beam periodic Beam stochastic **TMPS**

Stiffness test results [MPa]

with T. Wiste, O. Maliuk, K. Chadt in collaboration with Institute of Photonics and Electronics, Prague. J. Appl. Phys. 133, 043101 (2023); doi: 10.1063/5.0121650

Nanoscribe Photonic Professional GT2

- Two-Photon Polymerization Laser Lithography (2-PP LL)
 - fs-class laser, ~MHz
- IP-Dip2 resin (Nanoscribe GmbH)
- 63x objective (NA 1.4, Carl Zeiss) corresponding to approx.
 200 x 200 x 600 nm³ "ellipsoidal" building blocks
- Dip-in-Laser Lithography (DiLL) mode
- Block sizes were cubes with a side of 100 μm with offset of 2 μm in the horizontal plane and 3 μm in the vertical direction.
- Aver. 25 mW power (50% of nominal) to avoid overexposure
- The new generation of Nanoscribe printers can achieve optical quality surfaces through energy variation when printing the building blocks (Quantum X, roughness R_a down to 5 nm).
 - O. Maliuk

In collaboration with Institute of Photonics and Electronics, Prague

- Gaining printing know-how was the most demanding part of the fabrication process
 - complemented by optimization of structure (fillets, frames, ...)
- The targets had to be directly printed on an 8 µm thick copper foil for experimental purposes.
 - Risk of resin overexposure (mitigated by printing on the less finished and more lightdiffusive side of the foil, lower power)
- Print was developed in Propylene glycol methyl ether acetate (PGMEA, 30 min) then washed in IPA (60 min).
- Dry structures cured via UV-light (2 min).

- We used 3rd harmonics of the PALS laser (λ = 438 nm), around 180 J energy per pulse, one shot per 30 minutes
- Compared to graphene foams and TMPTA aerogels
 - critical density ~ 18 mg/cm³, all targets used were underdense
- Diagnostics:
 - soft x-ray streak camera for measuring the velocity of ionization front propagation
 - time integrated x-ray spectroscopy for measuring electron and ion temperatures
 - hard x-ray imager for measuring Kα emission produced by hot electrons in copper

- The measured **hot electron yield** was comparable to bare copper foil and much greater than for other targets. The hot electron spot was much broader than for other targets
- 3D graphene targets were used for interaction experiment for the 1st time. Due to complicated spatial structure, the **speed of** ionizing heat wave lower than in TMPTA of higher density.
- Chlorine doped plastic TMPTA aerogel was used in order to have possibility to derive ion and electron temperature from the emission spectra. The measured ion temperatures are approximately 3-times higher than electron temperatures.
- For 3D printed foam the expansion is bigger and starts inside when best focus is inside the target

shot 489 3D-print, 180 J, 284 ps, focus on surface, max. X-ray = 765

Plotted logarithm of X-ray yield (only photons >~ 1.5 keV get through the detection channel)

An in-house developed tape target systems allows to shoot for several hours without the need to break the vacuum

- A stepper motor pulls the tape from the magazine,
- while tape tension is controlled by a magnetic brake.
 - A basic tension shaft, before an upgrade
- Tested up to 7 cm/s in real shooting conditions
- The system can be used in both single shot and burst modes
 - In single shot mode, the stepper motor keeps tension on the target through its holding torque.

Tape Target System

- Next step is to broaden our high repetition rate tape target capabilities to allow the use of sophisticated tapes
 - Such as foams, dots, multilayers etc.
- There is a couple of ways how to approach that
 - Direct 3D printing/coating onto plastic tapes
 - inserting pre-prepared targets into thick tapes
- The number of targets is large
 - We shot 1000s in bursts in a day or two
 - Others of magnitude more for continuous shooting at 10 Hz

Multilayer target example

Courtesy General Atomics, collab. with ELI BL

Future Perspectives

- Different geometries investigated
 - minimal surfaces (e.g. gyroid) rather than beams
 - structured beams
- Doping (e.g. chlorine, aluminum, C-nanotubes)
 - a couple of ideas on doping, chlorine in particular
 not tested yet
- Adequate detailed simulations are needed
- Other than low density foams targets
 - customized targets for gamma generation
 - the new generation of printers allows for optical quality of surfaces

Nanoscribe Quantum X shape Surface roughness (R_a) down to 5 nm

Carbon nanotubes (CNT)

- Conductive composite structures
- Ying Liu et al, Int. J. Extrem. Manuf. 1 (2019) 025001 (15pp) - Precise assembly and joining of silver nanowires in three dimensions for highly conductive composite structures

a

- At the P3 platform, we have developed and successfully tested AM targets (3D printed)
- There is a wide range of ideas and possible future improvements
- In-house designed high repetition rate Tape Target
 System was successfully tested up to 3.3 Hz and 450 TW and high mechanical stability was demonstrated
- Merging high repetition rate systems and sophisticated targets is an exciting and challenging future task

BACKUPS

- All elements at direct proximity of the interaction point are easily interchangeable
 - Two titanium heads are used to position the target
 - Designs can be customized upon a user request
- The design of the aluminum body gives a 300° angle of view for diagnostics
- Large slit at the center to shoot the laser from the rear side
 - The slit has an opening angle adapted to our f/3 OAP
 - Very convenient to place diagnostics close to the target
- A secondary slit gives view on the target from the side
 - More space to put diagnostics in the equatorial plane
 - Convenient for symmetrical diagnostics

F. Condamine at TARG5 (2021, Dresden)

Tape Target System Commissioning

- Commissioned at HAPLS (ELI BL)
 - 450 TW, 3.3 Hz or single shots, (12 J, 27 ns) @ 810 nm
 - Short focal length 75 cm, FWHM of the FS 5 μm
 - The below numbers correspond to status <u>before</u> HAPLS and Tape Target upgrades
- Kα yield stability 6.6 % (25 μm Fe), 10.6 % (7.6 μm Cu)
- EMP stability of 3.3 % (Fe), 4.7 % (Cu)
 - Handy tool to see also slow variations in laser-plasma stab.
- Tape stability also measured directly with a microscope
 - RMS of 8.6 μm for 15 μm Fe (before brake upgrade)
 - Significant improvement after the magnetic brake upgrade RMS is never worse than ~4 µm, even for a narrow and thin copper tape

TMPTA aerogel foam structure

