42nd RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders 20-23 June 2023, Tivat, Montenegro

Exploring boron-induced defects in n-type 4H-SiC Schottky barrier diodes

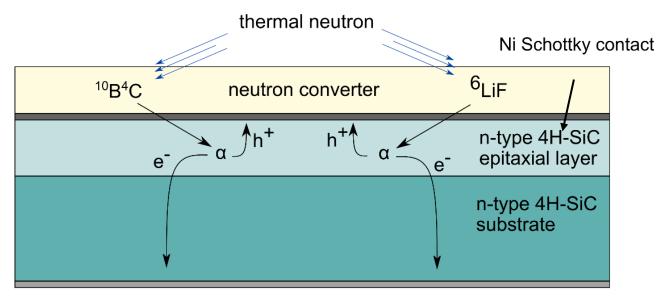
Tihomir Knezevic⁽¹⁾, Eva Jelavić⁽²⁾, Yuichi Yamazaki⁽³⁾, Takeshi Ohshima⁽³⁾, Takahiro Makino⁽³⁾, *Ivana Capan*⁽¹⁾

- (1) Laboratory for semiconductors | Division of Materials Physics | Ruder Boskovic Institute | Zagreb | Croatia
- (2) Faculty of Science | University of Zagreb | Zagreb | Croatia
- (3) National Institutes for Quantum Science and Technology | Takasaki | Japan

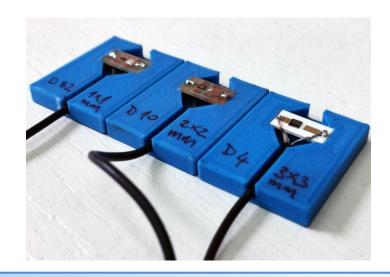
tihomir.knezevic@irb.hr; ivana.capan@irb.hr

University of Zagreb

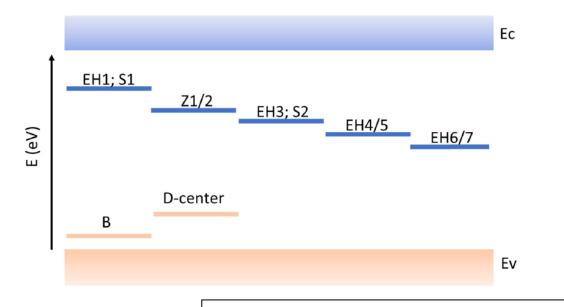
Outline


- Introduction
- Defects in 4H-SiC
- Deep-level transient spectroscopy
- Minority carrier transient spectroscopy
- Device fabrication and measurement setup
- Electrical characterization
- Conclusions

Introduction


4H-SiC Schottky barrier diode

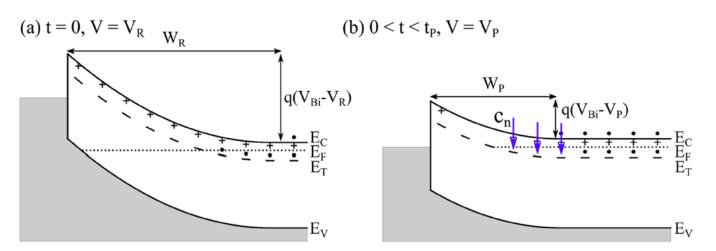
- 4H-SiC: wide bandgap material
- Applications in harsh environments high temperature, high voltage, radiation
- Neutron detection
 - Border security
 - Nuclear material detection

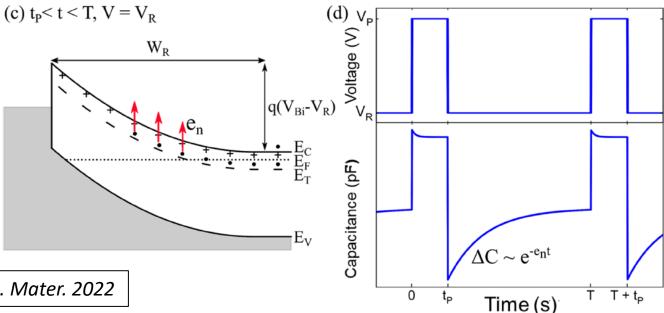

Ni ohmic contact

Defects in 4H-SiC

- Defects can be introduced
 - Unintentionally during growth process
 - Intentionally radiation, particles
- Electrically active defect can degrade the performance of the device
- Some defects considered "lifetime killers"

Trap Label	Identification	Activation Energy (eV)
EH ₁	C _i	Ec - 0.40
EH_3	C_{i}	Ec - 0.70
S_1	$V_{Si}(-3/-)$	Ec - 0.40
S_2	$V_{Si} (=/-)$	Ec - 0.70
Z_1	$V_{c} (=/0)$	Ec - 0.59
Z_2	$V_{c} (=/0)$	Ec - 0.67
$EH_{4/5}$	C_{si} - V_{c} (+/0)	Ec - 1.10
EH_6	$V_{c}(0/++)$	Ec - 1.30
EH_{7}	$V_{c}(0/++)$	Ec - 1.40
В	B_{si}	Ev + 0.28
D-center	B_c	Ev + 0.54

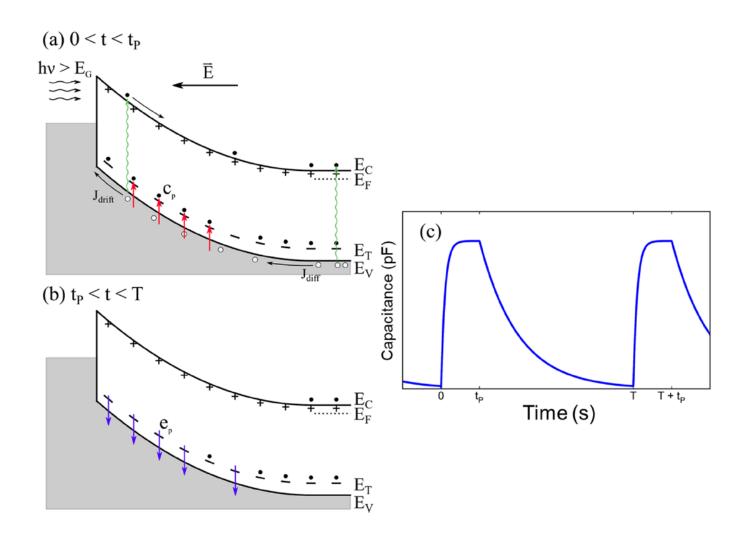



Graphical representation of energy levels based on DLTS studies

I. Capan, T. Brodar, Electron. Mater. 2022

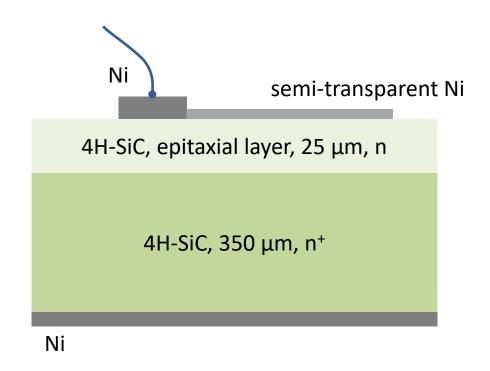
Deep-level transient spectroscopy (DLTS)

- Detection of electrically active traps for majority charge carriers:
 - Diode voltage pulsed transient capacitance measured
 - Detection limit: $\sim 10^9 10^{10}$ cm⁻³
 - Parameters: V_{R} , t_{p} , V_{p}
 - \bullet electron emission rate
 - \mathbf{c}_{n} electron capture rate



I. Capan, T. Brodar, Electron. Mater. 2022

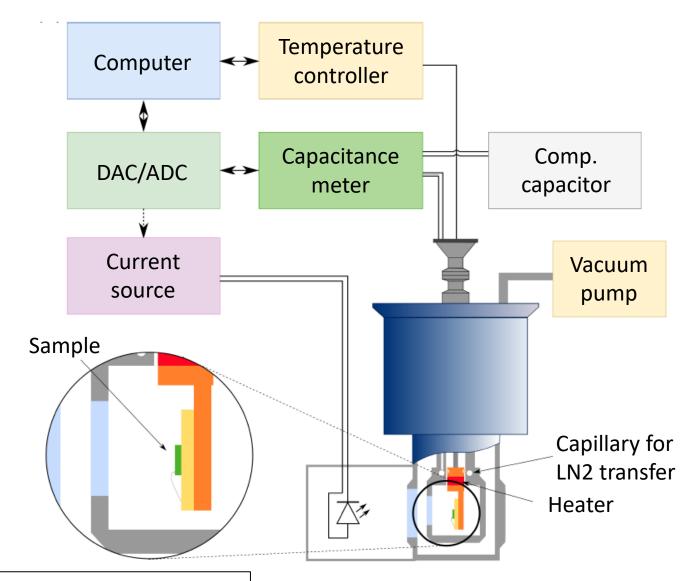
Minority carrier transient spectroscopy (MCTS)


- Detection of electrically active traps for minority charge carriers:
 - Fixed reverse bias → optical excitation pulsed → transient capacitance measured
 - \bullet_{p} hole emission rate
 - \mathbf{c}_{p} hole capture rate

I. Capan, T. Brodar, Electron. Mater. 2022

Device fabrication

- Starting substrate: 4H-SiC 350 μm
- Epitaxial layer: 25 µm chemical vapor deposition, no buffer layer: n-type nitrogen doped
- Ohmic contact sintered at 950 °C in an Ar atmosphere
- Schottky barrier hard mask Ni thermal evaporation
 - \blacksquare 2 × 2 mm² area
 - Semi transparent: 15 nm
 - Thick film for bonding: 100 nm

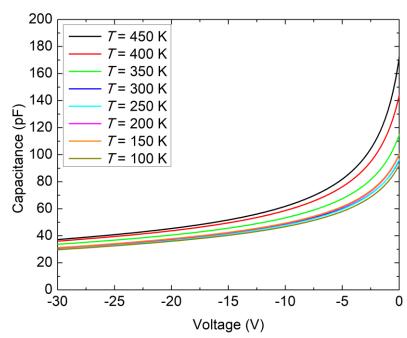

Measurement setup

Deep-level transient spectroscopy

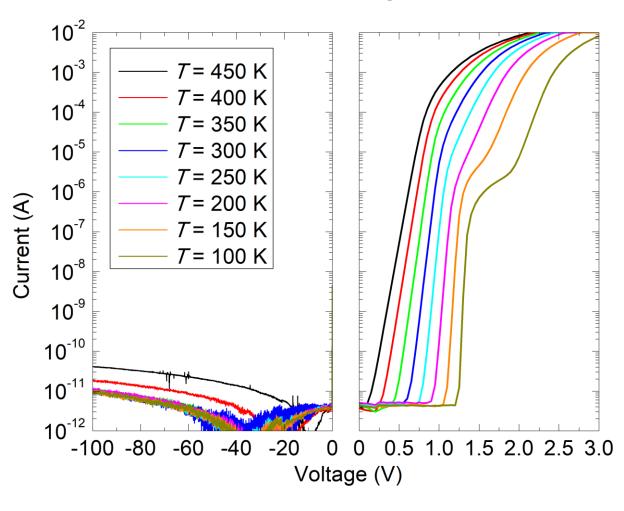
For MCTS: 365 nm LED

Cryostat: ~77 K to 450 K

- Electrical characterization:
 - Current-voltage (*I-V*)
 - Capacitance-voltage (C-V)



T. Brodar, PhD thesis, Zagreb, 2021


Electrical characterization – *I-V, C-V*

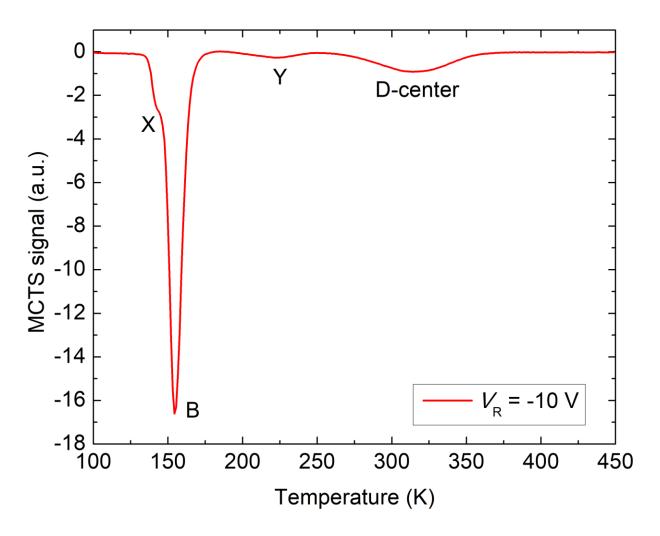
- *I-V* and *C-V* measurements performed at temperatures from 100 K to 450 K
- 'Kinks' observed in I-Vs at low temperatures → barrier height inhomogeneities

Capacitance-voltage (*C-V*)

Current-voltage (*I-V*)

T. Knezevic, E. Jelavić, Y. Yamazaki, T. Ohshima, T. Makino, and I. Capan, Materials, Apr. 2023, doi: 10.3390/ma16093347.

Deep-level transient spectroscopy (DLTS)


- $V_R = -10 \text{ V}, V_p = -0.1 \text{ V}, t_p = 10 \text{ ms}$
- Only $Z_{1/2}$ peak carbon vacancy $V_{\rm C}(=/0)$
 - "lifetime killer"
- Activation energy: $E_{\rm C}$ 0.65 eV
- Trap concentration: 3×10¹² cm⁻³

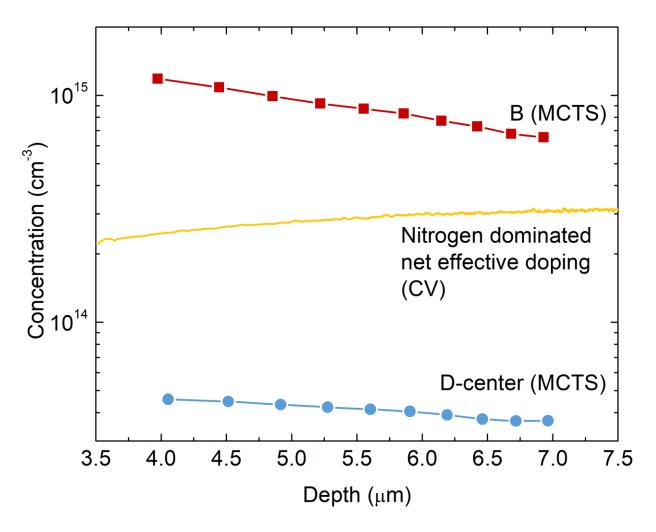
T. Knezevic, E. Jelavić, Y. Yamazaki, T. Ohshima, T. Makino, and I. Capan, Materials, Apr. 2023, doi: 10.3390/ma16093347.

Minority carrier transient spectroscopy (MCTS)

- Well known defects: B and D-center
 - B:
 - $E_V + 0.21 \text{ eV}$
 - D-center:
 - $E_V + 0.65 \text{ eV}$
- B peak > D-center peak
 - C-rich growth conditions

T. Knezevic, E. Jelavić, Y. Yamazaki, T. Ohshima, T. Makino, and I. Capan, Materials, Apr. 2023, doi: 10.3390/ma16093347.

Depth profile of B-center and D-center


Net effective doping – extracted from C-V measurements:

$$N_{TOT}(W) = \frac{2}{2\varepsilon_{SiC}\varepsilon_0 A^2 d (1/C^2)/d V}$$

B and D-center concentration extracted from MCTS :

$$N_T = \frac{\delta C_{max}}{C_0} \frac{2r^{r/(r-1)}}{1-r} N_{TOT}$$

 Difference in the slope of extracted B and D-center depth profile

T. Knezevic, E. Jelavić, Y. Yamazaki, T. Ohshima, T. Makino, and I. Capan, Materials, Apr. 2023, doi: 10.3390/ma16093347.

Conclusions

- MCTS measurements performed on 4H-SiC Schottky barrier diodes
- Unintentional boron incorporation during CVD growth
 - Two boron-related deep-level defects: **B** and **D-center**
- Estimated boron concentration (MCTS) exceeds the nitrogen doping concentration determined from CV measurements
- Steady-state electrical performance of the 4H-SiC SBD is preserved

Acknowledgment

■ This work was supported by the North Atlantic Treaty Organization Science for Peace and Security Program through Project No. G5674.

Thank you for your attention