SILICON CARBIDE DIODES FOR ULTRA-HIGH DOSE RATE DOSIMETRY

- C. Fleta¹, G. Pellegrini¹, P. Godignon¹, F. Gomez^{2,3}, J. Paz-Martín², R. Kranzer⁴, A. Schüller⁵
- 1 Instituto de Microelectronica de Barcelona, IMB-CNM-CSIC, Barcelona, Spain
- ² Department of Particle Physics, University of Santiago, Spain
- ³ Radiation Physics Laboratory, RIAIDT, University of Santiago, Spain
- ⁴ PTW, Freiburg, Germany
- 5 Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

Context: FLASH radiotherapy

FLASH effect (Favaudon et al., Sci Transl Med 6 (2014)): Irradiations with con Ultra-High Dose Rate pulsed radiation reduce adverse effects in healthy tissues

- Need real-time, highly precise dosimeters
- ➤ CNM is a partner in the European project EMPIR-UHDPulse (2019-2023) for metrology in UHDR beams

Limitation of conventional methods

URL: https://doi.org/10.1667/RADE-19-00012

^{*)} K. Petersson et al., High dose-per-pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber, Med. Phys. 44 (3), March 2017

^{**)}Images from: E. Konradsson, et al., Correction for Ion Recombination in a Built-in Monitor Chamber of a Clinical Linear Accelerator at Ultra-High Dose Rates

Silicon carbide diodes as real-time radiation dosimeters

Why SiC? Wide bandgap semiconductors (SiC and diamond), compared to silicon, have:

- Lower dark current
- Higher radiation hardness
- Tolerance to visible light and temperature variations

In addition, SiC compared to diamond has:

- More mature technology allowing to produce complex structures
- High quality substrate material available up to 200 mm wafers at a reasonable cost: good price-performance ratio

J. M. Rafí et al. JINST 13 C01045 (2018); IEEE Trans.Nucl.Sci. 67 (2020)

Devices (dosimeter)

- Circular 1 mm diameter PiN diodes on 3μm epitaxial 4H-SiC
- Designed and fabricated by IMB-CNM-CSIC (EU Patent pending)
- Encapsulated by PTW with their microSilicon housing for electrical connectivity

SiC diode schematic cross section

Encapsulated for electrical connectivity and for testing in water

Electron tests at PTB

- Measurements at PTB UHDPP¹ electron beam
- Electron energy 20 MeV
- Repetition rate 5 Hz, pulse duration 0.6, 1.6 and 2.9 μs
- Measurements in PMMA water tank with a motorized positioning system
- Reference dosimetry provided by Alanine and prototype flashDiamond²
- SiC diode operated without external bias

SiC diode in water phantom at PTB

^{1.} Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany

^{2.} M. Marinelli et al. "Design, realization and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry" Med Phys. 2022;49:1902–1910

Electrical characterization

Results

Intermediate Dose Per Pulse (DPP) range: 0.42 Gy

- Response independent both of DPP and of instantaneous dose rate
- Linearity deviation < 1 % *
- SiC diode sensitivity ~1 nC/Gy

Results (UHDR)

Ultra-high Dose Per Pulse (DPP) range: 11 Gy

 Signal linearity up to at least 11 Gy/pulse with a relative deviation of < 3 %

Results

Effect of accumulated dose

- Two runs, around ~26 kGy accumulated dose between them
- Response linearity not affected
- 5% reduction in sensitivity
- The saturation of the device response is associated to the series resistance –
- The higher the series resistance the lower the DPP value up to which the detector shows a linear response.

Pre-Irradiation

If pre-irradiated the sensibility of SiC its response is less sensible to variation

Results

Depth Dose Curves PDD measurement

- Several runs of PDD curves performed under UHDPP conditions with different dose per pulse and pulse duration irradiations
- SiC diode performance comparable to reference flashDiamond

Conclusions and outlook

First SiC diodes for relative dosimetry in UHDR pulsed electron beams.

- ✓ Response independent both of DPP and of instantaneous dose rate in the investigated range: up to 11 Gy/pulse, 3.8 MGy/s
- ✓ Radiation robust: 5% sensitivity reduction over 26 kGy
- ✓ Performance comparable to flashDiamond in PDD measurement

Future work:

- Systematic characterization in a wide range of beam configurations
- Validation of other detector structures fabricated: diodes with sidewalls removed for increased spatial and dose resolution, pixel configurations for 2D dose maps
- Understand the radiation hardness of SiC in different beams.
- Fabricate a new active dosimetry monitor based on the development of innovative SiC microdetectors able to quantify the dose delivered in FLASH effect in two dimensions.

Thank you for your attention

Campus Univ. Autónoma de Barcelona (UAB) 08193 Cerdanyola del Vallès (Bellaterra) Barcelona · Spain

https://rdg.imb-cnm.csic.es/

Disclosure

- Rafael Kranzer is a PTW employee.
- This work has received funding from the Spanish State Research Agency and the European Regional Development Fund under project RTC-2017-6369-3 (GRACE), and from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation program under project 18HLT04-UHDpulse.