Plans for characterization of LGADs with 30 MeV protons

Filip Krizek, Vasili Kushpil, Gordana Lastovicka-Medin, Gregor Kramberger

Motivation

Low Gain Avalanche Detector

- Silicon detector with an additional highly doped p+ gain layer creating high electric field region for charge multiplication
- Intrinsic gain depends on: gain layer doping, bias voltage, temperature

Promising technology for **proton-CT**LGADs offer fast signal collection
good spatial resolution
energy via time of flight

G.Kramberger LGAD sensors for application in proton CT, RAD2023

Why do we want to characterize LGADs with 30 MeV protons?

- How does response depend on angle for highly ionizing particles?
- Can we see increased gain due to less screening for angled tracks?

U-120M cyclotron @ NPI CAS

Protons

~ 30 MeV

(TID & NIEL)

Beam profile

2D symmetric Gaussian

$$\sigma_x = \sigma_y = 11 \text{ mm}$$

Time structure of the beam

- frequency 25 MHz

10 - 26 MHz

- shaped with 150 Hz macropulse
- typical duty cycle 5 10%

Setup used for MAPS irradiation

linear response up to 109 protons cm⁻² s⁻¹

Setup for LGAD irradiation

Stepper motor with threaded shaft to tilt the LGAD boards

Frames with LGAD boards

Beam

- Alignment of both LGADs with laser
- Enclosing the setup with metal sheets

LGADs

Thickness	200 µm
Active layer	50 μm
Gain layer depletion voltage	~51.5 V
Gain layer depth	~2.4 µm
Full depletion voltage	~60 V
Break down voltage of devices	~200 V
Size of the pads	$1.3 \times 1.3 \text{ mm}^2$

Coincidence of 2 LGADs in lab

Humidity

Waveform analysis

- Fit pedestal level
- Evaluate pedestal noise RMS
- Find signal maximum
- Peak amplitude > 5× noise RMS
- Integrate signal in the peak region
 (between the shorter dashed lines)

Statistical analysis

For given V_{bb} record ~80 waveforms

Look at statistical spread

Mean peak amplitude, area, FWHM for 90Sr β source with 2 LGADs in coincidence

Mean peak amplitude, area, FWHM for ²⁴¹Am source & w/o amplifier & autotrigger

Waveforms for $V_{bb} = 80 \text{ V}$

- Mixed field of α and γ (60 keV)
- With amplifier pulse amplitude exceeds
 ~0.6 V when amplifier starts to saturate

Outlook

- Make reference measurements with PIN diods
- Finilize setup for the test at cyclotron
- Investigate whether cyclotron RF matters
- The experiment is expected during September

Backup

Mean peak amplitude, area, FWHM for ²⁴¹Am source & with amplifier & autotrigger

Waveforms for $V_{bb} = 140$

- Mixed field of α and γ (60 keV)
- Pulse Amplitude exceeds amplifier ~0.6 V when amplifier starts to saturate