

Improving TCAD simulation of 4H-SiC particle detectors

<u>Philipp Gaggl</u>, Andreas Gsponer, Jürgen Maier, Simon Emanuel Waid, Richard Thalmeier, and Thomas Bergauer philipp.gaggl@oeaw.ac.at

42nd RD50 Workshop 20th June 2023

Introduction

Measure and verify material and model parameters from prototype 4H-SiC samples and adapt parameter files and models accordingly SYNOPSYS Sentaurus

Utilize TCAD simulations

Global TCAD Solutions (GTS)

Design and production of 4H-SiC particle detectors

Introduction

SYNOPSYS Sentaurus [1]

- One of the two big players in semiconductor TCAD software
- Widely used within the HEP community
- Access via Europractice [3]
- Extensive material and model database
- Provides all tools necessary for a full simulation workflow (e.g. process simulation, meshing, electrical simulation, post processing, optimization,...
 Sentaurus TCAD

Global TCAD Solutions (GTS) [2]

- Vienna-based TCAD provider
- Focusing on micro,- and nanoelectronics devices (only device simulations)
- Collaboration with HEPHY since 2023
- Investigating 4H-SiC samples and implementing the material in GTS
- Single-event-upsets using GEANT4
- Direct contact with developers

SYNOPSYS

Introduction

SYNOPSYS Sentaurus [1]

- One of the two big players in semiconductor TCAD software
- Widely used within the HEP community
- Access via Europractice [3]
- Extensive material and model database
- Provides all tools necessary for a full simulation workflow (e.g. process simulation, meshing, electrical simulation, post processing, optimization,...

 Sentaurus TCAD

Global TCAD Solutions (GTS) [2]

- Vienna-based TCAD provider
- Focusing on micro,- and nanoelectronics devices (only device simulations)
- Collaboration with HEPHY since 2023
- Investigating 4H-SiC samples and implementing the material in GTS
- Adapting the software to efficiently model silicon carbide (QFT-solver)
- Custom user support

SYNOPSYS

Parameters

- Constant improvement of literature values due to better processing techniques
- Especially in the last six years, SYNOPSYS continuously improved their SiC parameters
- Consider anisotropy of SiC (marked with *) → Be aware of the implemented orientation

Most important parameters and models to include for 4H-SiC

Band structure

- Permittivity*
- BG-narrowing (SB)
- Incomplete ionizationAl (p) and N (n) doping
- Split energy levels (N)

Charge carriers

- Mobility:

 Temperature dep.*
 Doping dep.*
 High field saturation*
- Impact ionization*

Recombination

- SRH
- Surface-SRH
- Auger
- Traps ($Z_{1/2}$ -defect)

Parameters

- Constant improvement of literature values due to better processing techniques
- Especially in the last six years, SYNOPSYS continuously improved their SiC parameters
- The anisotropic nature of SiC-polytypes should be considered (marked with *)

Some things to consider when using the default 4H-SiC.par

Recombination

- Model parameters for Shockley-Read-Hall (Scharfetter), Auger (and traps) are very process dependent
- No SurfaceRecombination

Mobility

- No anisotropy for holes in *ConstantMobility*
- No anisotropy for EnormalDependence
- Equal saturation
 velocity for e⁻ & h⁺

Impact ionization

Only OkutoCrowell includes anisotropy

- The wide bandgap of 4H-SiC leads to very low intrinsic charge carrier densities
- Usually, a much higher numeric accuracy than the default settings are required
- This can partially be mitigated by finer meshing
- Tuning error & convergence criteria and solver settings can improve convergence drastically

Numerical instability on the example of a forward-IV (transient) simulation

- Due to the low wafer quality (compared to Si), the Debye length is very small
- $\lambda = \sqrt{\frac{k_B T \epsilon}{q^2 N_{Doping}}} \approx 0.3 \ \mu m \text{ for } N_{Doping} = 1.5 \cdot 10^{14} \text{ cm}^{-3} \rightarrow \text{large computation times}^{[4]}$

Floating-point accuracy

- Drift diffusion PDE'S subtract almost equal charge carrier concentrations
- Sentaurus allows for dynamically changing the floating-point accuracy
- ExtendedPrecision(128) usually sufficient (minimum 80!)
- Only compatible with SUPER, PARDISO and ILS solvers

***** Floating point accuracy *****
ExtendedPrecision(128)

Error and convergence criteria

- Tightening the accuracy and error criteria (*Digits, RHSmin*)
- High RHSFactor and RHSmax allows for solutions to "bounce back"
- Stating reference values for low charge carrier densities

```
***** Error and convergence criteria *****

Digits = 15

RelErrControl

ErrEff(electron) = 1e-2

ErrEff(hole) = 1e-2

RhsAndUpdateConvergence

RHSmax = 1e30

RhsFactor = 1e120

RHSmin = 1e-10

CdensityMin = 1e-20

RefDens_eGradQuasiFermi_ElectricField_HFS = 1e14

RefDens_hGradQuasiFermi_ElectricField_HFS = 1e14

*****
```


Solver settings

- ILS and SUPER solver more robust for wide bandgaps
- Use Backwards Euler method (BE) for transient simulations

```
***** Individual solver settings *****
Method = Blocked
SubMethod = ILS(set=25)
ACMethod = Blocked
ACSubMethod = ILS(set=25)
ILSrc= "set (25) {
    iterative(gmres(100), tolrel=1e-10, tolunprec=1e-4, tolabs=0, maxit=200);
    preconditioning(ilut(1.5e-6,-1), right);
    ordering(symmetric=nd, nonsymmetric=mpsilst);
    options(compact=yes, linscale=0, refineresidual=10, verbose=0);
};"
Transient = BE
****
```


Simulations – CV diode

• Planar 4H-SiC p-in-n diodes from CNM [5]

 Capacitance measurements show strong deviation from suggested doping profile

• Slower propagation of the depletion zone due to higher doping concentration at the back

• Most likely due to diffusion processes during

growth

Simulations – Forward-IV

[7-11]

- Below detection limit at low bias
- Initial transient simulations agree decently
- Including the $Z_{1/2}$ **defect**:
- Dominant deep level defect in 4H-SiC [7-11]
- $0.63 \, \text{eV} 0.68 \, \text{eV} \, \text{below} \, E_c$
- Acceptor type, origin from C-Vacancy^[7-9, 10, 11]
- Thermally stable [8]
- Strong dependence on Si and C environment during epitaxial growth [8]
- Best fit $\rightarrow N_{Z1/2} \approx 10^{15} cm^{-3}$ (assumed cross section of $\sigma = 10^{-15} cm^2$)
- Reverse-IV: Waiting for more precise setup

Simulations – Transient pulses

- Transient pulse simulations crucial to model and compare detector response
- HeavyIon model in SENTAURUS Device [12]
- Energy deposition across given particle path
- Not instantly, but over very short time (≈ 5 ps)
- Load fields from quasistationary simulation over reverse bias
- "Empty" transient simulation before energy deposition necessary to numerically stabilize the current

Simulations – Transient pulses

42nd RD50 Workshop

- Performed charge collection measurements using multiple signal sources
- α particles (²⁴¹Am) [^{13]}
 Proton beam (62.4 MeV) [^{6]}
 UV-Laser (TCT) [^{14]}
- Comparison with several simulation software for cross-checking
- Simulation results agree very well (for the unirradiated case)
- Next step:
 Reproduce measurements of neutron irradiated samples [13, 14]

4H-SiC wafer-run

- In collaboration with CNM [5]
- $3 \times 50 \mu m \& 2 \times 100 \mu m$ (epitaxial layer)
- Design at HEPHY, processing at CNM
- First measurements by the end of 2023
- For 100 μ m, $V_{depl} \approx 1300 V$
- Simulations to optimize guard structure
 - → Maximize breakdown (BD) voltage
 - → Minimize guard structure size

Final design of the 4H-SiC wafer layout

4H-SiC wafer-run

- In collaboration with CNM [5]
- 3 x 50 μm & 2 x 100 μm (epitaxial layer)
- Design at HEPHY, processing at CNM
- First measurements by the end of 2023
- For 100 μ m, V_{depl} > 1300 V (unirradiated)
- Simulations to optimize guard structure
 - → Maximize breakdown (BD) voltage
 - → Minimize guard structure size

Guard structure design after optmimization

19

Uniform guards:

- Wider guards with small distances yield the best BD-behaviour
- BD occurs after the collector, where the field peak is highest
- Further optimization after collector required

- Use limit of 5 µm for the distance between guards
- Starting with a wide initial guard reduces field peak right after collector $\rightarrow w_{init}$
- Decrease guard width by some factor with every step to save space → decrement
- As soon as limitation is reached ($w_{guard} < 5 \mu m$), increase the distance between the guards by an increment (highest BD for 6%-12%)
- Multiple parameter sweeps (50 μm & 100 μm) to find an optimum

Parameter	Value	
W _{init}	60 μm	
distance	5 μm	
decrement	50%	
increment	10%	
total	200 μm	

Open challenges

- Need some fixed 4H-SiC parameters to extract others from measurement
- Measurement accuracy
 - Dark current in pA nA range even for irradiated samples
 - Low noise CSA or high bandwidth TIA required to accurately measure (MIP) signals
- Defects need to be better understood (densities, origin, cross sections)
- Same for interface traps
- Modeling of irradiation processes and damage
 - → Reproduce measurements of neutron irradiated samples [13, 14]

Outlook

- First measurements of new wafer run by the end of 2023
 - Various devices (circular & rectangular pad & strip diodes, MOSFETs, GCDs, MOSCAPs, Pixel-detectors...)
 - 5 wafers \rightarrow high statistic
- Investigate temperature dependency of model parameters
- Extensive irradiation studies of pad/strip-detectors and MOSFETs
- Updating TCAD-framework to simulate and design 4H-SiC-LGADs

References

- [1] : https://www.synopsys.com/silicon/tcad.html
- [2] : https://www.globaltcad.com/
- [3] : https://europractice-ic.com/
- [4] : Johnson et al., The Influence of Debye Length on the C-V Measurement of Doping Profiles, IEEE TRANSACTIONS ON ELECTRON DEVICES (1971)
- [5] : https://www.imb-cnm.csic.es/en
- [6] : Christanell et al., 4H-silicon carbide as particle detector for high-intensity ion beams. J. Inst. 17, C01060 (2022).
- [7] : Brodar et al., Depth Profile Analysis of Deep Level Defects in 4H-SiC Introduced by Radiation, Crystals (2020), doi:10.3390/cryst10090845
- [8] : Tsunenobu Kimoto, Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications, IEEE Press (2014)
- [9] : Capan et al., Deep Level Defects in 4H-SiC Epitaxial Layers, Materials Science Forum, ISSN: 1662-9752, Vol. 924, pp 225-228 (2018)
- [10]: Zippelius et al., Z1/2- and EH6-Center in 4H-SiC: Not Identical Defects?, Materials Science Forum, ISSN: 1662-9752, Vols. 717-720, pp 251-254 (2012)
- [11]: Kawahara et al., Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance, American Institute of Physics (2013), doi: 10.1063/1.4796141
- [12]: SentaurusTM Device User Guide (Version: U-2022.12)
- [13]: Gaggl et al.,, Charge collection efficiency study on neutron-irradiated planar silicon carbide diodes via UV-TCT, 10.1016/j.nima.2022.167218
- [14]: Gaggl et al., Performance of neutron-irradiated 4H-silicon carbide diodes subjected to alpha radiation, J. Inst.18, C01042 (2023)

BACKUP

4H-SiC detector properties

	Silicon	4H-Silicon carbide	CVD Diamond
Band gap [eV]	1.1	3.26	5.5
Ionization energy [eV]	3.6	5 – 8	12.86
atomic displacement threshold	13-20 eV	20-35	43
Density [g/cm ³]	2.33	3.22	3.52
Electron Mobility [cm²/Vs]	1430	⊥ c: 800; ∥ c: 900	1800-2200
Hole Mobility [cm²/Vs]	480	115	1200-1600
Saturation electron velocity [10 ⁷ cm/s]	1	2.2	2.7
Breakdown Field [MV/cm]	0.5	⊥ c: 4.0; ∥ c: 3.0	10
e/h pairs per µm	72	57	36
Typical active thickness [µm]	300	<150µm epi layer possible (50µm studied by us)	<400 (charge collection distance)
Material	Float zone	Epitaxially grown	chemical vapor deposition
e/h pairs MPV	21,600	2,850 (50µm)	14,000
Typical signal (recently measured myself at proton beam with UCSC LGAD-readout board and DRS4-based digitizer	1 - Peak, no. 2 0.35 0.10 0.15 0.16 0.16 0.17 0.18	1 - Fest, no. 14 0.00 -0.01 -0.02 -0.05 -0.05 -0.05 -0.06 -1.06 -2.0 2.3a-3	1 - Posk, no: 14 0.14 0.12 0.30 0.00 0.00 0.04 0.02 -4 -2 0 2 4 2a-0
Wafer costs	O(<100€)	O(1000€)	O(100,000€)
ilipp Gaggl	42 nd RD50 Workshop		

Lumped resistor approach for breakdown (BD) simulations

- Improves convergence for reverse bias modeling
- Attaching an external resistor to the ramped electrode (*Resist=...* in *Electrode* section)
 comparable to the device resistance at the onset of breakdown
- Ramp outer voltage to obtain an inner voltage corresponding to the bias
- At small bias: Main voltage drop over TCAD-device
 At BD-onset: Series resistance comparable to device resistance → voltage drop is split
 At BD: Device resistance drops, voltage drop mainly over series resistor
- Smoothly increase of outer voltage

5 µm

Simulations - MOSCAP

Structure:

- Used a (very) simple structure
- Only one oxide layer
- Measurements from [-30 V, 30 V]
- Very fine mesh at upper region
- First two layers below oxide

 2.418e+17
 5.848e+16
 1.414e+16

 Tirst two layers below oxide
 needed to be meshed at < 1 Å
 to reach convergence!!!
 - Carried out simulations for different fixed oxide charges

840 nm oxide

50 µm n-doped epitaxial 2.0e14 cm⁻³

3.420e+15

8.270e+14

2.000e+14

10

Simulations - MOSCAP

Preliminary results:

- Capacitance is comparable
- Measurements show two "knees" due to the double oxide structure
- Lower oxide charges at interface seem to fit better
- This makes sense due to the thermal oxide at the device
- Further simulation needed

Electric field propagation (1µm depth)

- Without any small guards, we get a peak field right after the biased collector
- This field value is the highest observed value for all structures
- Without any small guards, the electric field propagates to about 50 um after the contacts

Electric field propagation (1µm depth)

 Small inter-guard-distances efficiently weaken the fields directly after the contacted region

Electric field propagation (1µm depth)

 Regarding the guard-widths: Broader guards lower the peak field after the contact better

- A higher BD-voltage could be reached after including the oxide
- No-oxide: 4083 V
 oxide-floating: 4593 V
 oxide-biased: 4394 V
 50 um: +120 V
- Different BD for biased and floating guard (collector) indicate we can improve further

- Simulation run:increment = [0%-100%]
- Obtain a nice optimum
 between 2.5%-12.5%
- For this structure, BDbehavior for biased and floating collector are (almost) equal again

4H-SiC Samples

- Planar 4H-SiC p-in-n diodes from run 13575 of CNM Barcelona [2]
- $3 \times 3 \text{ mm}^2$ active area, $50 \text{ }\mu\text{m}$ epi
- Full depletion voltage : 300-400 V, $C_{det} = 18 \text{ pF}$
- Neutron irradiated (5 $\cdot 10^{14} 1 \cdot 10^{16} \, n_{eq}$) at ATI Vienna
- Characterization after neutron irradiation [13, 14]

