

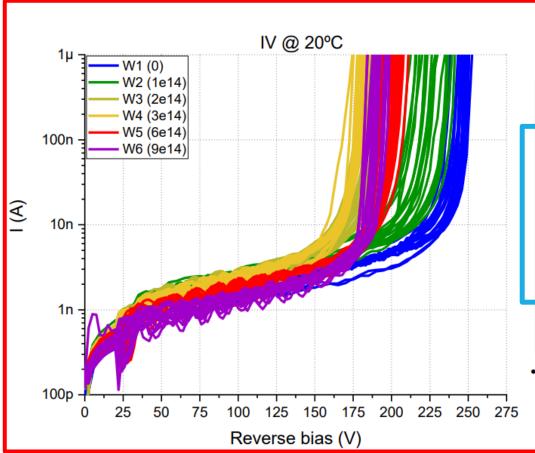
First measurements of irradiated CNM LGADs with carbon enriched gain layer

J. DEBEVC, B. HITI, G. KRAMBERGER, <u>A. HOWARD</u>, P. SKOMINA, B. ZORKO JOŽEF STEFAN INSTITUTE, LJUBLJANA

S. HIDALGO, G. PELLEGRINI, M. MANOJLOVIC, J. A. VILLEGAS DOMINGUEZ CNM, BARCELONA

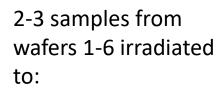
Previous CNM run (15246)

Long time annealing for both Carbon and Mult Layers 3h @ 1100°C.

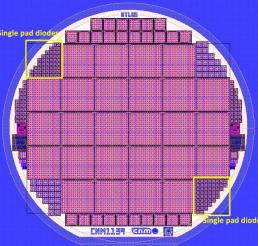

Wafer	Boron dose Boron Energy	Carbon dose/Energy	Acceptor removal constant (1e-16/cm²)
8	1.9e13 /cm²	0	8.25±0.08*
10	100keV	1e14/cm² / 150keV	4.95±0.06*

- >ATLAS and CMS upgrades require sensors to withstand up to ϕ_{eq} =2.5E15 cm⁻² and TID 2 MGy-> significant decrease of gain
- Previous CNM run (15246) showed good performance in terms of breakdown and depletion voltage, but poor radiation hardness for non carbon enriched sensors
- Carbon enrichment mitigates degradation of gain layer
 - Latest CNM run varies carbon concentration

ATLAS CNM run 15973


20 tested single pad devices of 1.3x1.3mm² per wafer (10 from the left and 10 from the right sides of the wafer)

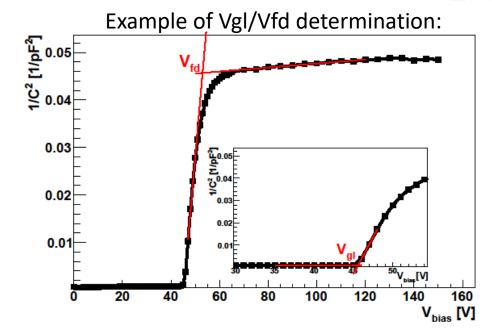
Wafer	Boron dose Boron Energy	Carbon dose/Energy
1	1.9e13/cm² 100keV	0 (R15246 W10)
2		1e14/cm ² / 150keV (R15246 W8)
3		2e14/cm² / 150keV
4		3e14/cm² / 150keV
5		6e14/cm² / 150keV
6		9e14/cm² / 150keV
7		6e14/cm² / 150keV
8		9e14/cm² / 150keV

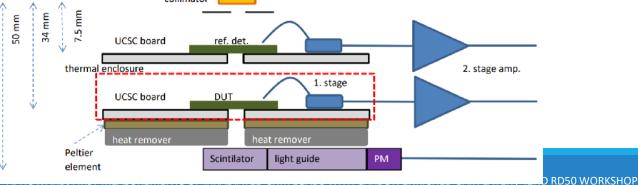

After a certain carbon dose, breakdown (depletion) voltage stops decreasing (increasing), which may be caused by crystal damage due to high dose implantation (under review)

See Jairo's talk at HGTD week

https://indico.cern.ch/event/1197867/contributions/5393946/attachments/2644911/4 577908/20230510_CNM_ATLAS_Run15973_FirstResults.pdf

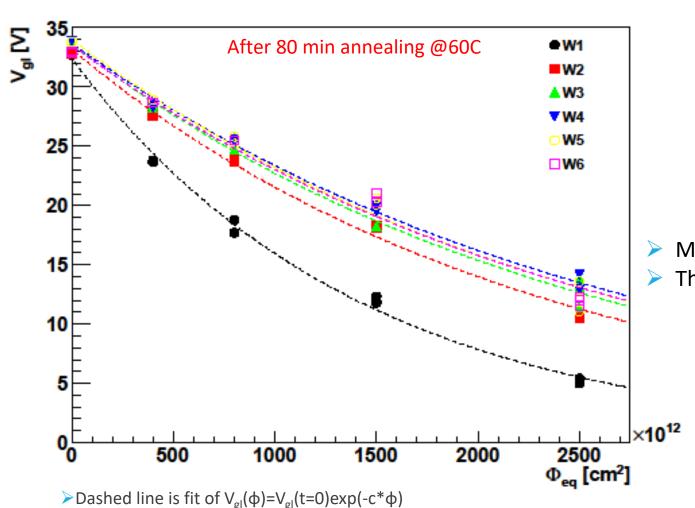
- 2.5E15
- 1.5E15
- 8E14
- 4E14 and had CV/IV and timing/CC measured



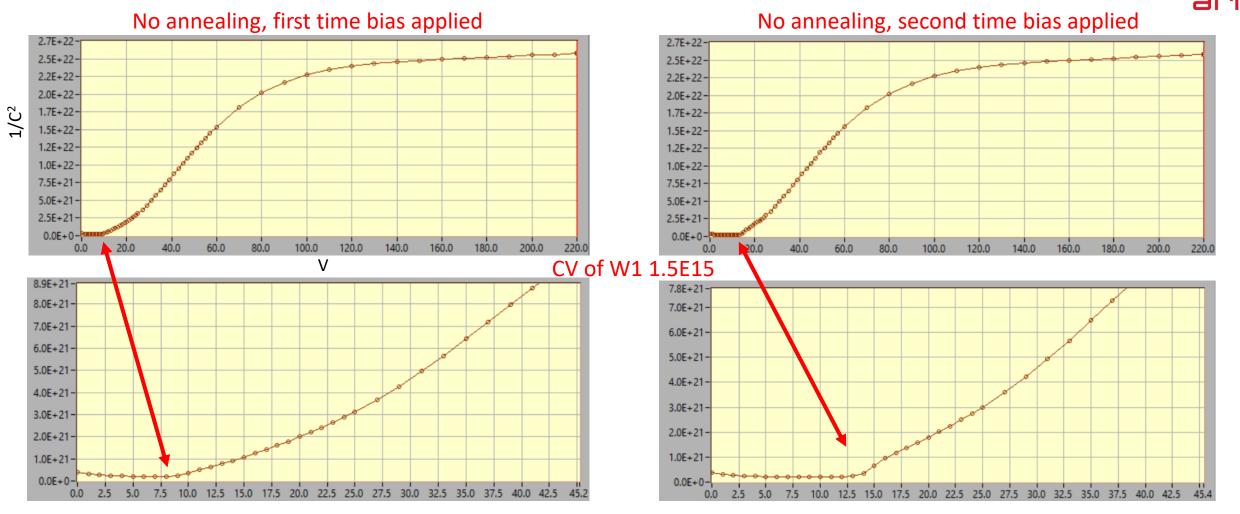


Experimental Procedure

- Irradiated with neutrons (at JSI Triga II reactor)
- ➤ Annealed for 80 mins @ 60°C and kept cold
 - CV/IV measured before and after annealing
- >CVIV:
 - >20°C/500mV/10kHz
 - ► V_{gl}/V_{fd} determined from CV
- ➤Timing/CC:
 - ≥90Sr source
 - >~-24C (cooling problems so couldn't reach -30C)
 - For details see Gregor's 37th RD50 talk https://indico.cern.ch/event/896954/contributions/4106334/

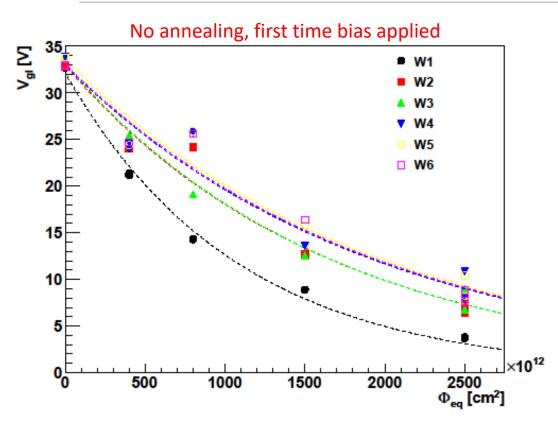


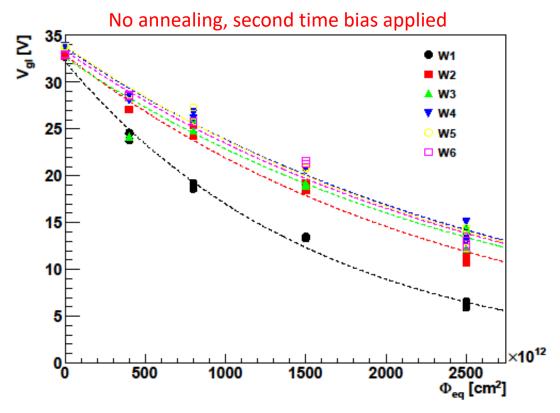
Acceptor Removal


Wafer #	c [10 ⁻¹⁶ cm²] (no annealing)	c [10 ⁻¹⁶ cm²] (80 min @ 60C)
W1	6.40	7.08
W2	4.07	4.31
W3	3.55	3.91
W4	3.45	3.66
W5	3.53	3.82
W6	3.51	3.76

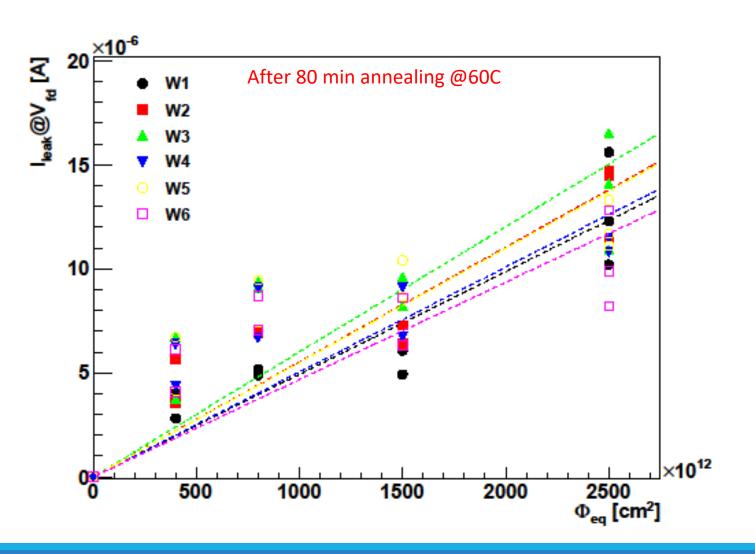
- Measured 2-3 samples per wafer per fluence
- The first results of the acceptor removal values show:
 - > no significant difference between wafers 3, 4, 5 or 6.
 - values are higher than hoped but all this has to be crosschecked with higher statistics, different locations on the wafer, labs and of course with signals
 - c is around 5-10% lower before annealing
 - in agreement with what was seen with HPK non carbonated sensors

First measurement after irradiation




First measurement after irradiation

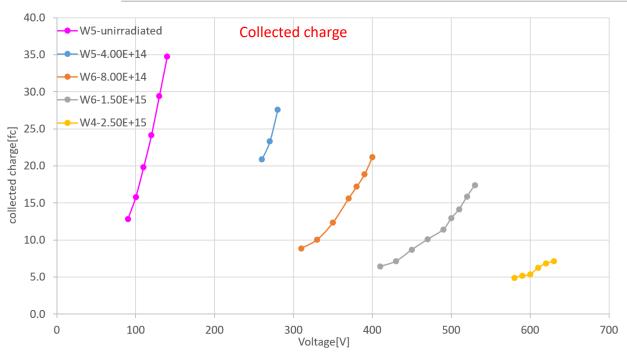
- Vgl values improves and stabilises
- Not specific to CNM, same is observed in sensors from other producers

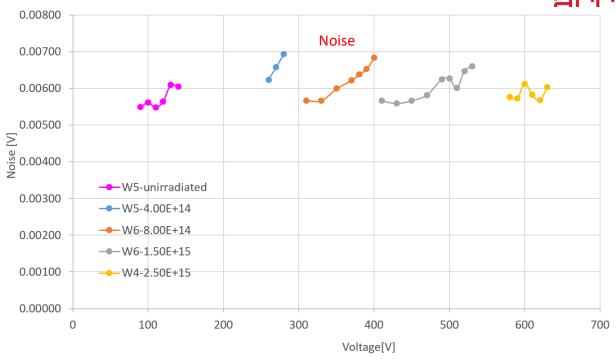


- ➤ Not just observed at JSI
- ➤ Cause unknown

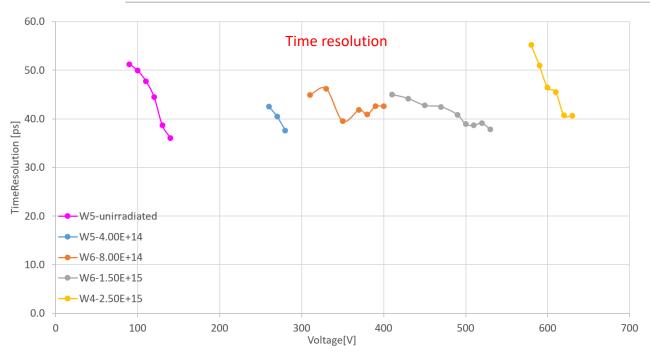
Leakage current at V_{fd}

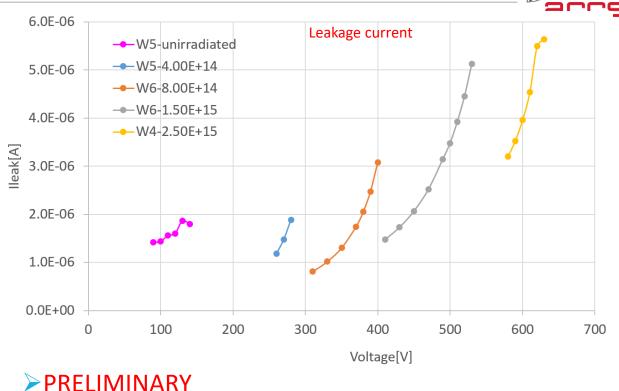
(Not the same as α)


Wafer #	α ¹ [10 ⁻¹⁷ A/cm] (80 min @ 60C)
W1	5.84
W2	6.53
W3	7.11
W4	5.97
W5	6.49
W6	5.54


- Values are compatible with expectations
- Gain at lower fluences pushes the values higher

Timing & Collected Charge


- ➤ Tested best samples one per fluence
- ➤ After 2.5E15 irradiation, sensor reaches
 - >>4 fC @ 580 V
 - >S/N>10



Timing & Collected Charge

- ➤ After 2.5E15 irradiation, sensor reaches
 - $\sim \sigma_{\rm t} < 50 \, \rm ps \ @ 600 \, V$
 - >I_{leak}<5 µA up to 610 V (@-24C)
- > Results so far not in disagreement with results coming from recent testbeam

Summary

- > Previous CNM run had poor radiation hardness for non carbon enriched sensors
 - > new run explores different carbon doses
- ➤ Samples from wafers 1-6 from latest CNM run had CV/IV measured
 - Acceptor removal is similar among carbon enriched wafers (wafers 2-6)
 - Acceptor removal increases slightly after annealing
 - Unexpected measurements first time bias is applied after irradiation
 - > c is initially worse, then improves in second measurement
 - Not specific to CNM observed among samples from different producers
- >Timing/CC measurements done on best sample for each fluence
 - > Better performance than expected
 - > After irradiation to 2.5E15: 4 fC @ 580 V; S/N>10; σ_t <50ps @ 600 V; I_{leak} <5 μm up to 610 V (@-24C)
- > Results are preliminary and need to be cross checked across more samples and from other labs