Cosmological Particle Production & Pairwise Spots on the CMB

Yuhsin Tsai University of Notre Dame

The Early Universe A Window to New Physics 10/20/2023

Yuhsin Tsai yhtsai@nd.edu

Cosmological Particle Production => Pairwise Hotspot signals on CMB

Yuhsin Tsai yhtsai@nd.edu

2

Based on 2107.09061 (JHEP 11 (2021) 158) and 2303.08869 (Phys.Rev.D 108 (2023) 4, 043525)

Jeong Han Kim (Chungbuk National University)

Soubhik Kumar

Adam Martin (Notre Dame)

Taegyun Kim (Notre Dame)

3

Moritz Munchmeyer (UW Madison)

Our goal: probing extremely heavy particles using inflationary dynamics + CMB signals Our goal: probing extremely heavy particles using inflationary dynamics + CMB signals

 In the context of "cosmological collider physics", we usually focus on signals of non-Gaussianity (≥3-pt functions)

 $\langle \delta \phi \delta \phi \delta \phi \rangle \Rightarrow \langle \delta T \delta T \delta T \rangle$

Yuhsin Tsai yhtsai@nd.edu

5

Our goal: probing extremely heavy particles using inflationary dynamics + CMB signals

 In the context of "cosmological collider physics", we usually focus on signals of non-Gaussianity (≥3-pt functions)

What if we elevate the particle mass even further, leading to tiny production rate that only occurs at specific moments?

Particle production

Consider a scalar particle *O* that carries a mass depending on the inflaton-VEV

- Sigma mass is typically heavy (compared to Hubble scale)
- mass takes its minimum value at time η_*

• Can be embedded into a periodic potential $m_{\sigma}^2 = M + 0^2 + g^2 f^2 \cos(\phi/f)$ or with a monodromy structure $m_{\sigma}^2 = M_0^2 + g^2(\phi - 2\pi nf)^2$

see Flauger, Mirbabayi, Senatore, Silverstein (2017), and Munchmeyer and Smith. (2019) for the N-point function study Since particle production only happens around η_*

can re-parametrize the mass without loss of generality

$$\mathscr{L}_{\sigma} = -\frac{1}{2}(\partial_{\mu}\sigma)^2 - \frac{1}{2}\left[(\mathbf{g}\phi - \mu)^2 + \mathbf{M}_0^2\right]\sigma^2$$

e.o.m. during the inflation

$$\sigma'' - \frac{2}{\eta}\sigma' + \left(k^2 + \frac{M^2(\eta)}{H^2\eta^2}\right)\sigma = 0$$

$$u = \sigma / \eta$$

$$u'' + \left(k^2 + \frac{M^2(\eta)/H^2 - 2}{\eta^2}\right)u \equiv u'' + \omega(\eta)^2 u = 0$$

simple harmonic oscillator with time-dependent frequency

$$\omega(\eta)^2 = k^2 + \frac{M^2(\eta)}{\eta^2}$$

when promoting field into an operator, the initial raising and lowering operators will mix in the later time raising/lowering operators

$$\begin{aligned} \hat{u}(\eta, \mathbf{x}) &= \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left[\hat{a}_{\mathbf{k}} \mathcal{I}_k(\eta) \, e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_{\mathbf{k}}^{\dagger} \mathcal{I}_k^*(\eta) \, e^{-i\mathbf{k}\cdot\mathbf{x}} \right] \\ &= \int \frac{d^3 \mathbf{k}}{(2\pi)^{3/2}} \left[\hat{b}_{\mathbf{k}} \, \mathcal{F}_k(\eta) \, e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{b}_{\mathbf{k}}^{\dagger} \, \mathcal{F}_k^*(\eta) \, e^{-i\mathbf{k}\cdot\mathbf{x}} \right] \end{aligned}$$

 $\mathcal{I}, \, \mathcal{F} \,\,$ are the initial & final mode functions

Yuhsin Tsai yhtsai@nd.edu

- Solve the time-dependent harmonic oscillation equation
- Choose initial condition with one sign of frequency
- Find the pre-factor of opposite signal frequency in the full solution
- The pre-factor contributes to particle production

(see the paper or backup slides for more details)

Number of σ pairs around the CMB last scattering surface (with $\eta = \eta_{rec} \pm \eta_*$)

$$N_{\sigma \text{ pairs}} = \frac{1}{2\pi^2} \left(\frac{g\dot{\phi}_0}{H_I^2}\right)^{3/2} e^{-\frac{\pi(M_0^2 - 2H_I^2)}{g|\dot{\phi}|}} \left(\frac{\eta_0}{\eta_*}\right)^3 \frac{\Delta\eta}{\eta_0}$$

$$M_{\rm eff}^2 \approx M_0^2 + g^2 \phi'^2 (\eta - \eta_*)^2$$

If
$$g=2$$
, $M_0=200\,H_I=3.3\sqrt{\dot{\phi}}$ and $\eta_*=100$ Mpc

(similar to chopping the sky into ~500x500 pieces)

 $N_{\sigma \, {\rm pairs}} \approx 30$

Back-reaction constraints

Need to make sure the scalar field

does not affect inflaton's slow-roll motion $3H_*\dot{\phi} \approx -\frac{\partial V_{\phi}}{\partial \phi}$ Since $\frac{\partial V}{\partial \phi} = \frac{\partial V_{\phi}}{\partial \phi} + g(g\phi - M)\sigma^2$ this requires $g(g\phi - M)\sigma^2 \sim gM_{\sigma}\sigma^2 \sim g n_{\sigma} \ll H_*\dot{\phi}$ (similar bound for not depleting inflaton's energy $M_{\sigma}n_{\sigma} \ll \dot{\phi}$)

Radiative correction => assume a UV completion (e.g. SUSY) takes care of that (see e.g., Flauger et al. (2016))

Back-reaction constraints

Why pairs? Separation?

- Particles are produced at least in pairs due to momentum conservation
- Particles tend to be produced with low momentum. Separation given by k^{-1} is comparable to the horizon size $|\eta_*|$
- We will model the separation as a random uniform distribution between 0 and $|\eta_*|$

Pairwise signals on the CMB

Coupling to inflaton modifies curvature perturbation in the horizon

Once perturbation in the old horizon is frozen, **NEW** particle mass Modifies the perturbation in the **NEW** horizon

Curvature perturbation in position space

The resulting curvature profile in $r \leq |\eta_*|$ from the spot center,

$$\left\langle \zeta_{\sigma} \right\rangle = \left[\frac{g}{2} \log \left(\frac{|\eta_*|}{r} \right) \right] \frac{H}{2\pi\sqrt{2\epsilon}M_{pl}} \sim \left[\frac{g}{2} \log \left(\frac{|\eta_*|}{r} \right) \right] \left\langle \zeta_{ad} \right\rangle$$

Spot size $\sim |\eta_*|$ and the coupling g controls the spot temperature over CMB fluctuations

Curvature perturbation in position space

The resulting curvature profile in $r \leq |\eta_*|$ from the spot center,

$$\left\langle \zeta_{\sigma} \right\rangle = \left[\frac{g}{2} \log \left(\frac{|\eta_*|}{r} \right) \right] \frac{H}{2\pi \sqrt{2\epsilon} M_{pl}} \sim \left[\frac{g}{2} \log \left(\frac{|\eta_*|}{r} \right) \right] \left\langle \zeta_{ad} \right\rangle$$

As long as the linear order expansion in time catches the mass evolution, the primordial signal profile is universal

Include the effect of "sub-horizon" physics

from baryon acoustic oscillations (the transfer functions)

20

 η_*

the conformal time & horizon size of particle production

$\eta_* = 160 \,\mathrm{Mpc}$

Temperature profile

 $\eta_* = 100 \,\mathrm{Mpc}$

 $\eta_* = 50 \,\mathrm{Mpc}$

When particles are away from

the last scattering surface ($\eta_* = 160 \text{ Mpc}$)

0 Mpc

+ 96 Mpc

When particles are away from

the last scattering surface ($\eta_* = 50$ Mpc)

+ 48 Mpc

0 Mpc

Possibility of seeing the signal?

Assume foreground does not fake signals with size $\eta_* \gg 10 \,\mathrm{Mpc}$

Convolutional Neural Network (CNN)

Instead of matched filter, we use the CNN to dig out the signal from background

CNN analysis works better for signals with non-spherical and varying profiles

We cross check the result between CNN and MF using <u>signals with fixed profiles</u>, and most of the results are similar

Convolutional Neural Network (CNN)

Our CNN structure

Train the CNN with 160k smaller size images (w/ & w/o signal injection) Network outputs the probability of having a signal in the image

25

Results from the 3rd convolution layer

Result: 2σ exclusion bound

with sky fraction = 60%

Number of PHS	$\eta = 50$	$\eta = 100$	$\eta = 160$
g = 1	8	840	1162
g=2	5	20	17
g=3	4	9	8

M_0/H_I	$\eta = 50$	$\eta = 100$	$\eta = 160$
g = 1	145	120	114
g=2	213	199	194
g = 3	266	253	247

$M_0/(g\dot{\phi}_0)^{1/2}$	$\eta = 50$	$\eta = 100$	$\eta = 160$
g = 1	2.5	2.0	2.0
g=2	2.6	2.4	2.4
g = 3	2.6	2.5	2.4

Table 2. Upper: 2σ upper bound on the number of PHS in the whole CMB sky with both hotspot centers located within $\eta_{\rm rec} \pm \eta_*$ window around the last scattering surface. In the calculation we assume sky fraction $f_{\rm sky} = 60\%$. Lower left: lower bounds on the bare mass of the heavy scalar field in units of the Hubble scale during the inflation. Lower right: lower bounds on the bare mass in units of the mass, $(g\dot{\phi}_0)^{1/2}$, owing to the inflaton coupling.

27

$$N_{\sigma \text{ pairs}} = \frac{1}{2\pi^2} \left(\frac{g\dot{\phi}_0}{H_I^2}\right)^{3/2} e^{-\frac{\pi(M_0^2 - 2H_I^2)}{g|\dot{\phi}|}} \left(\frac{\eta_0}{\eta_*}\right)^3 \frac{\Delta\eta}{\eta_0}$$

Result: 2σ exclusion bound

with sky fraction = 60% (similar to the Planck analysis)

The CNN analysis can (in principle) set mass bounds close to the optimal limit allowed by the CMB search

Result: 5σ discovery reach

with sky fraction = 60% (similar to the Planck analysis)

Number of PHS	$\eta = 50$	$\eta = 100$	$\eta = 160$
g = 1	16	2047	2757
g=2	10	48	40
g = 3	9	21	19

M_0/H_I	$\eta = 50$	$\eta = 100$	$\eta = 160$	$M_0/(g\dot{\phi})^{1/2}$	$\eta = 50$	$\eta = 100$
g = 1	143	116	110	g = 1	2.4	2.0
g=2	210	194	189	g=2	2.5	2.3
g = 3	262	247	241	g=3	2.6	2.4

Table 3. Same as Table 2 but for the 5σ discovery reach.

$$N_{\sigma \text{ pairs}} = \frac{1}{2\pi^2} \left(\frac{g\dot{\phi}_0}{H_I^2}\right)^{3/2} e^{-\frac{\pi(M_0^2 - 2H_I^2)}{g|\dot{\phi}|}} \left(\frac{\eta_0}{\eta_*}\right)^3 \frac{\Delta\eta}{\eta_0}$$

 $\eta = 160$

1.9

2.3

2.4

Conclusion

Production of heavy particles with inflaton-dependent mass generate pairwise spots on the CMB map

Signal hotspots have a well-predicted profile that only depends on (g, η_*)

CNN can provide a powerful position space search of the signal

More things to explore:

- Search on real Planck image?
- Large Scale Structure signals?

Backup Slides

More details on the σ production

Expand σ mass around inflaton value at η_* (min- m_{σ} for particle production)

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\tau^2} + (\kappa^2 + \tau^2)u = 0$$

= $\gamma(n-n) - \kappa^2 = \frac{k^2}{2} + \frac{M_0^2 - 2}{2} - \gamma^4 - \frac{g^2 \phi'^2}{2}$

 $\eta_*^2 \gamma^2$

 η^2_*

The solution is a combination of parabolic cylinder functions

$$u = i\sqrt{\sigma}W(-\frac{\kappa^2}{2}, +\sqrt{2}\tau) + \frac{1}{\sqrt{\sigma}}W(-\frac{\kappa^2}{2}, -\sqrt{2}\tau) \quad \sigma = \sqrt{1 + e^{-\pi\kappa^2}} - e^{-\pi\kappa^2/2}$$

have chosen the initial condition that the solution gives a positive frequency function at initial time $\frac{u \sim e^{-i\frac{1}{2}\tau^2}}{u \sim e^{-i\frac{1}{2}\tau^2}}$

$$\tau \to -\infty$$

More details on the Sigma production

$$u = i\sqrt{\sigma}W(-\frac{\kappa^2}{2}, +\sqrt{2}\tau) + \frac{1}{\sqrt{\sigma}}W(-\frac{\kappa^2}{2}, -\sqrt{2}\tau) \qquad \qquad u \sim e^{-i\frac{1}{2}\tau^2} \\ \tau \to -\infty$$

However, at the late time, the solution contains a negative frequency mode

Curvature perturbation in position space

Maldacena

(1508.01082)

Fialkov et al

Produced heavy particles backreact on spacetime

$$S_{\sigma} = \int dt \sqrt{-g_{00}} M_{\text{eff}} \supset \int d\eta \, \partial_{\eta} \zeta \frac{M_{\text{eff}}(\eta)}{H} \tag{0911.2100}$$

$$(0911.2100)$$

$$(0911.2100)$$

Give rise to a non-trivial one-point function

$$\langle \zeta_k \rangle = -i \int_{\eta_*}^0 d\eta \, \langle 0 | \zeta_k(\eta_0) \partial_\eta \zeta_k(\eta) | 0 \rangle \frac{M_{\text{eff}}(\eta)}{H} + c.c.$$

Profile in the position space

$$\langle \zeta_k \rangle = \left[\frac{M_{\text{eff}}(|\eta| = r)}{2\sqrt{2\epsilon}M_{pl}} \right] \frac{H}{2\pi\sqrt{2\epsilon}M_{pl}}$$

Yuhsin Tsai yhtsai@nd.edu

given by the inflaton fluctuation

 $r \leq |\eta_*|$ (=0, $r > |\eta_*|$)

Hot or Cold spots?

Perturbation enters in the radiation-dominant & matter-dominant era has temperature fluctuation

$$\frac{\delta T}{T}\Big|_{\text{CMB, RD}} = -\frac{1}{3}\langle\zeta_{\sigma}\rangle \qquad \qquad \frac{\delta T}{T}\Big|_{\text{CMB, MD}} = -\frac{1}{5}\langle\zeta_{\sigma}\rangle$$

The minus sign comes from the gravity potential (Sachs-Wolfe), makes pairwise spots **COLD** before entering the horizon

However, we find that the baryon acoustic oscillation (sub-horizon phys) converts the signal into HOT spots and further changes the fluctuation

$$\theta(\vec{x}_0, \hat{n}, \eta_0) = \frac{4\pi}{(2\pi)^3} \int_0^\infty \frac{dk}{k} \sum_l j_l(k\eta_0 - k\eta_{\rm rec})(2l+1)\mathcal{P}_l(\hat{n} \cdot \hat{n}_{\rm HS}) \left(f_{\rm SW}(k) + f_{\rm ISW}(k)\right) f(k\eta_*).$$

 $f_{\rm SW}(k) = T_{\rm SW}(k)j_l(k\eta_0 - k\eta_{\rm rec})$

Include the effect of "sub-horizon" physics

from baryon acoustic oscillations (the transfer functions)

Yuhsin Tsai yhtsai@nd.edu

Convolutional Neural Network (CNN)

Apply the same network to a larger image (~1/25 of the sky), sliding the search box, convert the map into a "probability map"

With "clustering" and vetoing clusters with small pixel numbers, we calculate the signal capture rate & false positive rate