Cosmological Implications of Kalb-Ramond Fields

Leah Jenks University of Chicago KICP The Early Universe Workshop October 20, 2023

With Christian Capanelli, Rocky Kolb, Evan McDonough arXiv:2309.02485

Main Takeaways

- 1. Kalb-Ramond fields have related, but distinct properties to axions and dark photons
- 2. Kalb-Ramond-like-particles (KRLPs) are a viable dark matter candidate
- 3. KRLPs can be produced via freeze-in and cosmological gravitational particle production
- 4. Many directions for future follow up

Dark Matter

Leah Jenks

DM Candidate: Dark Photons

Leah Jenks

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu$$

- Diagonalize kinetic term to obtain $A'_{\mu}J^{\mu}_{EM}$
- A'_{μ} can be portal to dark sector or DM itself

particle production

 $+ e A_{\mu} J^{\mu}_{EM} + \frac{1}{2} m^2 A'_{\mu} A^{'\mu} - \epsilon \frac{1}{\Lambda} F^{\mu\nu} F'_{\mu\nu}$

• SM photon kinetically couples to a dark U(1) A'_{μ}

• Can be produced via freeze-in, gravitational

DM Candidate: Axions

Leah Jenks

 $\mathscr{L} \supset g_{\theta\gamma\gamma}\theta F\tilde{F} + \frac{g_{\theta ff}}{2m_f}\partial_{\mu}\theta\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$

- Originally introduced to solve strong CP problem (Peccei & Quinn, 1977)
- Extended to a class of 'axion like particles' as a DM candidate
- Can be produced via freeze-in, misalignment

Kalb-Ramond-Like-Particles

Kalb-Ramond Field: $B_{\mu\nu}$

(Kalb & Ramond, 1974)

• Antisymmetric, massless two-form field, $B_{\mu\nu}$

• Analogous to EM potential A_{μ}

Leah Jenks

Proposed in string theory by Kalb & Ramond

$S = \int d^4 x H_{\mu\nu\rho} H^{\mu\nu\rho}$

H = dB

Kalb-Ramond-Like-Particles (KRLPs)

Leah Jenks

 $S = \left[d^4 x \left(H_{\mu\nu\rho} H^{\mu\nu\rho} - m^2 B_{\mu\nu} B^{\mu\nu} \right) \right]$

- areas of physics

Kalb-Ramond-Like-Particles

H = dB

• Antisymmetric, massive two-form field, $B_{\mu\nu}$

• EFT-inspired, $B_{\mu\nu}$ -like objects appear in many

• $(1,0) \oplus (0,1)$ representation of the Lorentz group

Dualities

Massless KR

"Kalb-Ramond axion"

(Svrcek & Witten, 2006)

$d\theta = \star dB$

Leah Jenks

Dualities

Massless KR

"Kalb-Ramond axion" (Svrcek & Witten, 2006)

$d\theta = \star dB$

Leah Jenks

Massive KR

Dual to a *pseudovector* (e.g. Smailagic & Spalluci, 2001; Hell, 2022)

$$B_{ij} = \epsilon_{ijk} B^k$$

$$S = \int d^4x \left(H_{\mu\nu\rho} H^{\mu\nu\rho} - m^2 B_{\mu\nu} B^{\mu\nu} \right)$$
$$\downarrow$$
$$S = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_{\mu} A^{\mu} \right)$$

 \neq Proca

Distinguishing KRLP and Proca

The KRLP and Proca fields are distinct objects

KRLP

• Pseudovector

Stueckelberg trick' massless limit: U(1) + vector

• Massless KRLP \rightarrow axion

Leah Jenks

Proca

- Stueckelberg trick' massless limit: U(1) + scalar
- Massless Proca \rightarrow spin-1

Interactions

Interactions built from symmetry properties

- KRLP is an antisymmetric matrix
- $B_{\mu\nu}$ a pseudovector (parity even)
- $H_{\mu\nu\rho}$ parity odd
- $\star B$ parity even

Leah Jenks

Dark photon-like portal $\mathscr{L}_{int} = g B_{\mu\nu} \bar{\psi} \sigma^{\mu\nu} \psi$ $\sigma^{\mu\nu} = [\gamma^{\mu}, \gamma^{\nu}]$

Axion-like portal

 $\mathscr{L}_{int} = \tilde{g}\tilde{H}_{\mu}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ $\tilde{H} = \star H$

Freeze-in Production

<u>Coalescence</u>

 $f\bar{f} \to B$

Leah Jenks

Freeze-In

 $\dot{n}_B + 3Hn_B \approx \bar{n}_1 \bar{n}_2 \langle \sigma v \rangle$

<u>Compton</u>

<u>Annihilation</u>

Freeze-in: Axion-like Portal

Leah Jenks

KRLP $\mathscr{L}_{int} = \tilde{g}\tilde{H}_{\mu}\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ Axion (Langhoff et al., 2022) $\mathscr{L}_{int} = \tilde{g}\partial_{\mu}\theta\bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ • Scales like $\sim m_f^{1/2}$ • Independent of T_{RH}

C. Capanelli, LJ, E. Kolb, E. McDonough

Freeze-in: Dark-Photon-like portal

Capanelli, LJ, Kolb, McDonough 2023

Leah Jenks

KRLP

 $\mathscr{L}_{int} = g B_{\mu\nu} \bar{\psi} \sigma^{\mu\nu} \psi$

• Independent of m_f

• Scales like $\sim T_{RH}^{1/2}$

Dark Photon Redondo & Postma, 2008)

$$\mathscr{L}_{int} = g A_{\mu} \bar{\psi} \gamma^{\mu} \psi$$

• Scales like ~ $m_f^{1/2}$ • Independent of T_{RH}

Cosmological Gravitational Particle Production

• Expansion of universe \rightarrow particle production (e.g. Schrodinger, 1939; Parker 1965; Kuzmin & Tkachev, 1998; Chung, Kolb & Riotto, 1998) $n_k = \frac{k^3}{2\pi^2} |\beta_k|^2$

$$na^3 = \int \frac{dk}{k} n_k$$

Leah Jenks

DM production for a wide range of masses & spins

(e.g. Chung, Kolb & Riotto, 1998+ Graham, Mardon & Rajendran, 2015 Kolb & Long, 2018 Alexander, LJ & McDonough, 2020 Kolb, Ling, Long & Rosen, 2022)

CGPP of Spin-1 Fields

CGPP Studied in detail for spin-1 fields

(e.g. Graham, Mardon & Rajendran, 2015; Kolb & Long, 2018)

Recall:

$$S = \int d^4x \sqrt{-g} \left(-\frac{1}{2} \right)^2$$

GPP of minimally coupled KRLPs identical to Proca

Leah Jenks

 $S = \frac{1}{12} \left[d^4 x \sqrt{-g} \left(H_{\mu\nu\rho} H^{\mu\nu\rho} - 3m^2 B_{\mu\nu} B^{\mu\nu} \right) \right]$

 $\left(\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+\frac{1}{2}m^2A_{\mu}A^{\mu}\right)$

CGPP of KRLPs

Add non minimal couplings?

Proca (Kolb & Long, 2018)

 $\xi_1 R A_\mu A^\mu$

 $m_{eff,t}^2 = m^2 - \xi_1 R - \frac{1}{2} \xi_2 R - 3\xi_2 H^2$ $m_{eff,x}^2 = m^2 - \xi_1 R - \frac{1}{6} \xi_2 R + \xi_2 H^2$

Leah Jenks

<u>KRLP</u>

 $\xi_3 R B^{\mu\nu} B_{\mu\nu}$

 $\xi_4 R^{\mu\nu\rho\sigma} B_{\mu\nu} B_{\rho\sigma}$

 $m_{eff,t}^2 = m^2 - \frac{2}{3}\xi_3 R - \frac{2}{9}\xi_4 R - \frac{4}{3}\xi_4 H^2$ $m_{eff,x}^2 = m^2 - \frac{2}{3}\xi_3 R - \frac{2}{27}\xi_4 R + \frac{4}{3}\xi_4 H^2$

CGPP of KRLPs

minimally coupled spin-1

Capanelli, LJ, Kolb, McDonough in prep See also: Ozsoy & Tasinato, 2023, Cembranos et al., 2023

Leah Jenks

Add non minimal couplings?

Effective masses are the same (on FRW)

We get GPP of non minimally coupled KRLPs from non

Cosmological Gravitational Particle Production

Compare: minimal and non-minimal coupling

Full parameter space in progress

Leah Jenks

Capanelli, LJ, Kolb, McDonough, 2023 Capanelli, LJ, Kolb, McDonough, in prep

Future Directions

- Experimental prospects: dark photon and axion experiments (Belle-II, DarkLight)
- Couplings to cosmic strings (e.g. Vilenkin & Vachaspati, 1987)
- Cosmological collider signaturess (e.g. Chen & Wang, 2010; Arkani-Hamed & Maldecena, 2015; Lee et al., 2016)
- Terrestrial collider signatures
- Primordial gravitational waves
- & much more!

Leah Jenks

Summary & Conclusions

- KRLPs are a well-motivated particle which share properties with axions and dark photons
- As a dark matter candidate, KRLPs can account for the relic density of dark matter
- Production possible via freeze-in and CGPP
- Much more to be done!

Leah Jenks

Thank you!

Extra Slides

Leah Jenks

CGPP of KRLPs

 $S = \frac{1}{12} \int d^4x \sqrt{-g} \left(H_{\mu\nu\rho} H^{\mu\nu\rho} - 3m \right)$

GPP of nonminimally coupled KRLPs identical to Proca!

Leah Jenks

Add non minimal couplings?

$$\imath^2 B_{\mu\nu} B^{\mu\nu} - \xi_1 R B^{\mu\nu} B_{\mu\nu} - \xi_2 R^{\mu\nu\rho\sigma} B_{\mu\nu} B_{\rho\sigma}$$

Dualize

 $S = \left[d^4 x \sqrt{-g} \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m^2 A_{\mu} A^{\mu} - \frac{1}{2} \xi_1 R A_{\mu} A^{\mu} - \frac{1}{2} \xi_2 R^{\mu\nu} A_{\mu} A_{\nu} \right) \right]$

Leah Jenks

Leah Jenks

