Charge quantisation, Axion strings, and Cosmic birefringence arXiv:2305.02318 (2023) arXiv:2111.12741 (2022)

Winston Yin, 2023-04-28

Charge quantisation

Charges beyond the Standard Model

- Electric charges in Standard Model (SM) are multiples of 1/3
- What are the charge assignments in beyond-the-SM theories?
- Any new fermions with charges less than 1/3?
- Axion-photon coupling can help us answer this question
- Observable: cosmic birefringence (in CMB) induced by axion strings
- P. Agrawal, A. Hook, J. Huang (2020)

Ultralight axion (-like particles)

- Axions are pseudo-scalar fields, i.e. their values are periodic $a \in [0, 2\pi f_a)$
- Generic product of breaking of global U(1) symmetry [Peccei-Quinn (PQ) symmetry] in models beyond SM
- Ultralight axions with mass $m_a \lesssim H_{\rm cmb} \simeq 3 \times 10^{-29} \, {\rm eV}$
 - CP problem
 - Dark matter
 - Potential as dark energy
 - Predicted in large numbers in string theory "axiverse" scenarios

Axion-photon coupling After PQ symmetry breaking

Induces a Chern-Simons (topological) axion-photon coupling

PQ-EM anomaly coefficient < axion periodicity. PQ symmetry breaking scale

Anomaly coefficient

- f_a is subject to renormalisation
- But \mathscr{A} is not, so its value is fixed on all energy scales

- \mathscr{A} is integer multiple of square of the smallest electric charge beyond SM
- Beyond-the-SM theories predict different $\mathscr{A} = \mathscr{O}(1)$, e.g. 4/3 for minimal GUT
- Axion strings will allow us to measure \mathscr{A} directly, unaffected by f_a

 $\mathcal{L} \supset \frac{\mathcal{A}\alpha_{\rm em}}{4\pi f_{\alpha}} a F \tilde{F}$

Cosmic birefringence Induced by axion-photon coupling

Polarisation of CMB photons is rotated by intervening axion field

$\Delta \Phi =$

- Rotation angle is proportional to net change in axion value along photon path
- Typically $a \ll 2\pi f_a$, so effect is very weak (naively)
- With axion strings, $\Delta a \approx n 2\pi f_a$ for integers *n* for any CMB photon, possible due to axion periodicity
- $\Delta \Phi \approx n \mathscr{A} \alpha_{em} = n \mathscr{O}(deg)$, rotation angle is macroscopic and quantised!

$$\mathscr{L} \supset \frac{\mathscr{A}\alpha_{\rm em}}{4\pi f_a} \, a \, F \, \tilde{I}$$

$$= \frac{\mathscr{A}\alpha_{\rm em}}{2\pi f_a} \Delta a$$

Axion strings

Axion strings Topological defects in axion field

- *a* changes by exactly one period $2\pi f_a$ around a string
- Topologically stable (cannot be continuously deformed into vacuum)
- Formed in large numbers by Kibble mechanism if PQ symmetry breaking occurred after inflation
- Ultralight axion strings have no detectable gravitational effect

Cosmic birefringence Induced by axion strings

- Observable: anisotropies in CMB polarisation rotation field

$$\Delta \Phi = \frac{\mathscr{A} \alpha_{\rm em}}{2\pi f_a} \Delta \alpha$$

• CMB polarisation rotates by $\Delta \Phi = \pm \mathscr{A} \alpha_{em}$ if photon passes through a loop

M. Jain, A. J. Long, M. A. Amin (2021)

Simulations Of axion string networks

- String dynamics leads to the same loop length distribution
- Most strings (~80%) are Hubble or super-Hubble scale
- The rest are logarithmically distributed sub-Hubble scale

Loop-crossing model

A phenomenological string network model

- M. Jain, A. J. Long, M. A. Amin (2021)
- Circular string loops in random orientations scattered throughout the universe
- Loop radius distribution specified for one redshift then evolves via scaling law
- Each loop "paints" an ellipse on polarisation rotation field filled with $\pm \mathscr{A} \alpha_{\rm em}$

Simulated polarisation rotation field (red+, blue-)

W. W. Yin, L. Dai, S. Ferraro (2023)

Parameters Of the loop-crossing model

- $\mathscr{A} = 0.1 \sim 1$ Overall scaling of string-induced CMB polarisation rotation signal
- $\xi_0 = 1 \sim 100$ Effective number of (Hubble-scale) string loops per Hubble volume
- Other parameters that control loop radius distribution at any given redshift

Cosmic birefringence

Quadratic estimators

- CMB polarisation rotation field must be estimated from cross-correlations between primary CMB observables T, E, and B
- Quadratic estimators (QE), well established for weak lensing, can be applied
- Lensing potential and polarisation rotation field can be simultaneously estimated via QEs
- Cannot resolve individual strings, need statistical detection of many strings
- Power spectrum of QEs well understood, use as summary statistics

QE sensitivity To axion string signal

- Signal is dominated by $L \lesssim 100$ modes in the rotation field power spectrum • CMB Stage III, IV will discover or falsify axion string-induced anisotropic
- polarisation rotation

W. W. Yin, L. Dai, S. Ferraro (2022)

W. W. Yin, L. Dai, S. Ferraro (2022)

Planck constraint

- For the loop-crossing model in which a fraction of string loops have logarithmically distributed sub-Hubble sizes
- Consistent with absence of axion strings

• Planck 2015 data gives constraint $\mathscr{A}^2 \xi_0 < 0.93$ at 95% confidence

Beyond the power spectrum

Limitations **Of power spectrum**

- Only captures Gaussian information
- Unable to distinguish between string networks with the same $\mathscr{A}^2 \xi_0$ but different \mathscr{A}
- Need to go beyond power spectrum
 - Bi-/trispectrum? CNN? <u>Scattering transform?</u>

Many weak stringt

W. W. Yin, L. Dai, S. Ferraro (2023)

Scattering transform

and orientations

real space

- Similar to convolutional neural network but requires no training lacksquare
- Can reduce to translationally and rotationally symmetric summary statistics

Convolve input field with Morlet wavelets (localised in real and Fourier space) of different scales

Fourier space S. Cheng, et al. (2020)

• Non-linear transform (absolute value) after convolution ensures non-Gaussian info is extracted

Advantages **Of scattering transform (ST)**

- Over bi-/trispectra •
 - Packs non-Gaussian info in small number of coefficients: for 128^2 input field, only 21 ST coefficients
 - Higher-order ST does not suffer from the increased sample variance from (input field)^(high power)
- Over convolutional neural network (CNN)
 - Requires no training
 - Reduced coefficients are inherently translationally and rotationally symmetric
 - Individual coefficients have interpretable meaning

Parameter inference Using scattering transform

- Generate a large number of polarisation rotation fields on the discretised parameter space of the loop-crossing model
- Compute their scattering transform coefficients (Kymatio Python package)
- Compute sample mean and covariance matrix at each parameter grid point
- Interpolate to obtain the "theory" against which actual CMB polarisation rotation field is compared
- Likelihood maximisation by MCMC

Evaluation

- Testing is done using mock polarisation rotation fields with known parameters as input fields
- Procedure repeated for both ideal noise-free case and QE reconstruction noise at future CMB-HD level
- Compared with power spectrum analysis

Ideal noise-free case

• Able to clearly distinguish between $\mathscr{A} = 1/9, 1/3, 2/3$

realizations of Model I $\zeta = 0.3$ $A^2 \xi_0 = 0.6$ $\zeta = 0.3$ $A^2 \xi_0 = 0.15$ $\zeta = 0.7$ $\mathcal{A}^2 \xi_0 = 0.6$ $\zeta = 0.7$ $\mathcal{A}^2 \xi_0 = 0.15$ 10^{-1} \mathcal{A}

Posterior of A for noise-free

W. W. Yin, L. Dai, S. Ferraro (2023)

CMB-HD noise level

• Able to clearly distinguish $\mathscr{A} = 2/3$ from $\mathscr{A} = 1/9, 1/3$ and marginally between A = 1/9, 1/3

of Model I with CMBHD reconstruction noise

Summary

- Axion-photon coupling is proportional to anomaly coefficient ${\mathscr A}$
- \mathscr{A} reveals charge assignments beyond the SM
- Axion strings induce quantised anisotropic rotation of CMB polarisation $\propto \mathscr{A}$
- CMB Stage III, IV will give us a conclusive answer on axion strings through power spectrum of QE
- Power spectrum analysis suffers from $\mathscr{A}^2 \xi_0$ degeneracy
- If axion strings are discovered, scattering transform can measure \mathscr{A} (at CMB-HD noise level) and rule out certain beyond-the-SM theories

References

- S. Cheng, Y.-S. T, B. Ménard, J. Bruna (2020) A new approach to observational cosmology using the scattering transform arXiv:2006.08561
- P. Agrawal, A. Hook, J. Huang (2020) A CMB Millikan Experiment with Cosmic Axiverse Strings arXiv:1912.02823
- M. Jain, A. J. Long, M. A. Amin (2021) CMB birefringence from ultra-light axion string networks arXiv:2103.10962
- W. W. Yin, L. Dai, S. Ferraro (2022) Probing cosmic strings by reconstructing polarization rotation of the cosmic microwave background arXiv:2111.12741
- M. Buschmann, J. W. Foster, A. Hook, A. Peterson, D. E. Willcox, W. Zhang, B. R. Safdi (2022) Dark matter from axion strings with adaptive mesh refinement arXiv:2108.05368
- W. W. Yin, L. Dai, S. Ferraro (2023) Testing charge quantization with axion string-induced cosmic birefringences