Qianshu Lu Institute for Advanced Study and New York University

Parity Domain Walls and the Cosmology of Nelson-Barr based on [2212.03882]

With Pouya Asadi, Samuel Homiller, and Matthew Reece

The Early Universe: a window to new physics, October 21, 2023

The quark sector of the Standard Model has two possible sources of CP violation:

- The complex phase $\delta_{\rm CKM}$ in the CKM matrix
- $\theta = \theta + \arg \det(m_u) + \arg \det(m_d)$, where θ comes from $\bar{\theta} = \theta + \arg \det(m_u) + \arg \det(m_d)$, where θ

$$
\frac{\theta}{16\pi^2}\int d^4x\,{\rm tr}\left(G_{\mu\nu}G^{\mu\nu}\right)
$$

The Strong CP problem: $\delta_{CKM} \sim \mathcal{O}(1)$ while

 $\delta_{\rm CKM} \sim \mathcal{O}(1)$ while $\bar{\theta} \lesssim 10^{-10}$

The Strong CP Problem

[Pecci & Quinn '77] $\partial \mathcal{P} \colon \delta_{\text{CKM}}$ and θ both $\mathcal{O}(1)$ at tree-level axion dynamically relaxes θ to zero $\delta_{\rm CKM}$ and $\bar{\theta}$ both $\mathcal{O}(1)$ $\bar{\theta}$

To CP or not CP

light degree of freedom well studied, rich phenomenology

Two sectors of solution to the strong CP problem, depending on whether CP(or sometimes just P) is a true symmetry of nature

To CP or not CP

[Pecci & Quinn '77] $\partial \mathcal{P} \colon \delta_{\text{CKM}}$ and θ both $\mathcal{O}(1)$ at tree-level axion dynamically relaxes θ to zero $\delta_{\rm CKM}$ and $\bar{\theta}$ both $\mathcal{O}(1)$ $\bar{\theta}$

well studied, rich phenomenology

: δ_{CKM} and θ both 0 at tree-level $\delta_{\rm CKM}$ generated from spontaneous breaking of CP $\delta_{\rm CKM}$ and $\bar{\theta}$ [Nelson '84, Barr '84] light degree of freedom consequences less explored

Two sectors of solution to the strong CP problem, depending on whether CP(or sometimes just P) is a true symmetry of nature

The story/plan in one slide

Scale of $\langle CP \rangle$ tied with scale of inflation

[McNamara & Reece 2212.00039] Domain walls from spontaneous breaking of parity are absolutely stable, even when parity is gauged

cosmological consequences associated with the "quality" of Nelson-Barr models

Part 1: Stability of Parity Domain Walls [McNamara & Reece 2212.00039]

Domain walls are dangerous

Absolutely stable domain walls will dominate the universe and contradict Standard Cosmology if

 $v \gtrsim 1 \text{MeV}$

Getting rid of domain walls: internal symmetry

Domain walls from spontaneous breaking of internal symmetry

(e.g. $\mathbb{Z}_2 \rightarrow 1$)

Global: DWs are stable (if explicit breaking, needs to be protected) **Getting rid of domain walls: internal symmetry** Domain walls from spontaneous breaking of internal symmetry $(e.g. Z_2 \rightarrow 1)$

Domain walls from spontaneous breaking of internal symmetry

Gauged: DW destroyed by strings $G \rightarrow \mathbb{Z}_2 \rightarrow 1$

Gauged: DW destroyed by strings $G \rightarrow \mathbb{Z}_2 \rightarrow 1$

Domain walls from spontaneous breaking of internal symmetry

Inflate away

Domain walls from spontaneous breaking of parity (or parity with any internal symmetry attached to it)

Global: Dws are stable Gauged: Inflate away

Getting rid of domain walls: Parity symmetry

[McNamara & Reece 2212.00039] Parity string does not exist

Internal symmetry vs parity

Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold

Internal symmetry vs parity

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

$$
g^P_{i\rightarrow j}=\text{sign}\det\left(\frac{\partial x^\nu_j}{\partial x^\mu_i}\right)\in\mathbb{Z}_2
$$

Non-orientable: Going around a cycle forces a parity transformation

Internal symmetry vs parity

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

$$
g^P_{i\to j}=\text{sign}\det\left(\frac{\partial x^\nu_j}{\partial x^\mu_i}\right)\in\mathbb{Z}_2
$$

Internal symmetry vs parity

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

$$
g_{i\to j}^P = \text{sign}\det\left(\frac{\partial x_j^{\nu}}{\partial x_i^{\mu}}\right) \in \mathbb{Z}_2
$$

Orientable: No parity transformation along any cycle Non-orientable: Going around a cycle forces a parity transformation

Internal symmetry vs parity

To open a hole in a parity domain wall, must go through topology change of the underlying manifold

String-like object cannot cause parity flip

Let's assume a parity string exist.

We want the string to implement a parity transformation as we go around it, along trajectory C.

String-like object cannot cause parity flip

- Parity transformation in up-down or left-right direction will destroy the string configuration
- The only direction left is front-back: but there is no continuous way to do a front-back flip as you traverse a circle

String-like object cannot cause parity flip

- Parity transformation in up-down or left-right direction will destroy the string configuration
- The only direction left is front-back: but there is no continuous way to do a front-back flip as you traverse a circle
- all closed, 1-dimensional manifolds are orientable, i.e. parity string cannot exist

Getting rid of domain walls: Parity symmetry

Domain walls from spontaneous breaking of parity (or parity with any internal symmetry attached to it)

> [McNamara & Reece 2212.00039] Parity string does not exist

Gauged: Inflate away

Part 2: Nelson-Barr Quality Problem and Cosmology

A Minimal Nelson-Barr construction Bento, Branco, Parada (BBP) '91

- Add to SM a pair of vector-like fields with quantum numbers of bottom-type quarks, $D\ \bar{D}$ and N pesudoscalars η_a
	- Assume CP symmetry, and a discrete symmetry \mathbb{Z}_N $\eta_a \to e^{2\pi i k/N} \eta_a$, $D \to e^{-2\pi i k/N} D$, $\bar{D} \to e^{2\pi i k/N} \bar{D}$
		- The down-type quark Lagrangian is then
		- $\mathcal{L} \supset \mu_D \bar{D}D + (\lambda_d)^i_i Q_i H^c \bar{d}^j f^a_i \eta_a D \bar{d}^i + \text{h.c}$
		- where all parameters are real because of CP $Q_iH^c\bar{D}$ η_aDD terms forbidden because of \mathbb{Z}_N

At tree level,
$$
\mathcal{L} \supset (Q \quad I
$$

 $D\big)\begin{pmatrix} \lambda_d v/\sqrt{2} & 0\\ \sum_a f_i^a \langle \eta_a \rangle & \mu_D \end{pmatrix} \begin{pmatrix} d\\ \bar{D} \end{pmatrix}$ $\overline{a} \equiv \begin{pmatrix} Q & D \end{pmatrix} \mathcal{M}_0 \begin{pmatrix} \bar{d} \ \bar{D} \end{pmatrix} \, .$

$$
\Rightarrow \bar{\theta} = \theta + a
$$

Effective mass matrix for the Standard Model quarks:

$$
\left(m_0^2\right)^i_j = \left(m_d\right)^i_k \left(\delta^k_l + \frac{F^{\dagger k}F_l}{F_p F^{\dagger p} + \mu_D^2}\right) \left(m_d^T\right)^l_j, \quad F_i \equiv \sum_a f_i^a \left<\eta_a\right>
$$

 $\mathcal{O}(1)$ complex phase

Assume that the scaler potential generates complex vevs, $\langle \eta_a \rangle$ **A Minimal Nelson-Barr construction** Bento, Branco, Parada (BBP) '91

 $\log \det \mathcal{M}_0 = 0$

The Nelson-Barr "Quality" Problem

 $\frac{1}{\Lambda_{\rm EFT}} \eta_a^\dagger \eta_b \bar{D}D, \quad \frac{1}{\Lambda_{\rm EFT}} \eta_a^\dagger Q_i H^c \bar{D}$

- Corrections from higher-dimensional operators to $\bar{\theta}$:
	-
	- From dimensional analysis: $\Delta \bar{\theta} \sim \frac{\Lambda_{\rm CP}}{\Lambda_{\rm EFT}}$
		- CP breaking scale cannot be too large:
			- $\Lambda_{\rm EFT}=M_{\rm pl} \Rightarrow \Lambda_{\rm CP} \lesssim 10^8 {\rm GeV}$

Current bound from BICEP/Keck:

Cosmological implications of $H_{\text{inf}} \lesssim 10^8$ GeV

Inflation model building

 $r\equiv \frac{\mathcal{P}_T}{\mathcal{P}_C}$

Tensor-to-scalar ratio directly measure the scale of inflation:

$$
\frac{m}{\lambda} \approx 10^8 \frac{H_{\rm inf}^2}{M_{\rm pl}^2}
$$

- $r < 0.036$
	-

$$
)^{-13}\left(\frac{\Lambda_{\mathrm{CP}}}{10^8\ \mathrm{GeV}}\right)^2
$$

From the constraint that inflation happens after spontaneous CP breaking:

 $r \leq 1.7 \times 10$

Cosmological implications of $H_{\text{inf}} \lesssim 10^8$ GeV

Gravitational waves from cosmic string

Image from [Cui, Lewicki, Morrissey, Wells '19] Detection of gravitational wave from cosmic string rules out minimal Nelson-Barr

Cosmological implications of $H_{\text{inf}} \lesssim 10^8$ GeV Gravitational waves from OTHER domain walls

Calculation method from [Hiramatsu, Kawasaki, Saikawa '13]

Two possible solutions:

spontaneous CP breaking in our sector $\Lambda_{\rm CP} \lesssim 10^8$ GeV applies here

Challenges: keeping $θ$ small enough, fast annihilation of DWs, etc

spontaneous CP breaking in hidden sector

Inflation to remove domain walls

visible sector domain walls annihilate due to effective explicit CP breaking

- 2. Alleviate quality problem by forbidding higher-dimensional operators: chiral Nelson-Barr models
	- Chirally charging D, D under a new symmetry $U(1)_X$ will forbid the dimension-5 operators $D,$ \bar{D}

 $\mathcal{L} \supset -y_D \rho D$.

The rest of the model is the same as the minimal Nelson-Barr construction

See also [Valenti, Vecchi '21]

To make inflation high scale again

Two possible solutions:

$$
\frac{1}{\Lambda_{\rm EFT}}\eta_a^\dagger Q_i H^c \bar{D}
$$

Need a new scalar ρ to give masses to D, D

$$
\bar{D},\quad \mu_D=y_D\left<\rho\right>
$$

 $U(1)_X$ is taken to be a linear combination of hyper charge and B-L, which is always anomaly free for SM

To cancel anomalies, need to add another set of fermions, B, B $U(1)_Y$ $U(1)_X$ $(2)_L$ $-1/3$ -1 $+1/3$ -5 $+1/3$ $+1$ $-1/3$ $+5$ $\overline{0}$ $+6$ $+2$ $\overline{0}$

To make inflation high scale again

Chiral Nelson-Barr

$$
\eta_a^{\dagger} \eta_b \rho D \bar{D}, \quad \eta_a^{\dagger} \mu
$$

$$
\Delta \bar{\theta} \simeq \frac{1}{y_D} \frac{\Lambda_{\rm CP}^2}{\Lambda_{\rm EFT}^2}
$$

- All possible dimension-5 operators are forbidden. Quality problem arise again at dimension-6:
	- *^aρQi* $H^c\bar{D}$, $\eta_a\eta_b\eta_c^{\dagger}D\bar{d}$ _{*j*}
	- Correction to θ is now

$$
\Rightarrow \Lambda_{\rm CP} \lesssim 10^{13} \; \rm GeV
$$

Now the scale of CP breaking is high enough to recover most of the cosmology we are familiar with

To make inflation high scale again

Chiral Nelson-Barr

Conclusion

- Despite the long history of the Nelson-Barr mechanism, consequences of spontaneous parity breaking has only been clarified recently
- •Spontaneous breaking of CP leads to exactly stable domain walls [McNamara & Reece 2212.00039], which must be inflated away
- Nelson-Barr quality problem: the scale of spontaneous CP breaking cannot be too high
- These facts lead to phenomenological consequences of otherwise unconstrained Nelson-Barr models
- Chiral Nelson-Barr models is one set of solution to the domain wallquality problem. Other possibilities and their phenomenological consequences remain to be explored.

Cosmological implications of $H_{\text{inf}} \lesssim 10^8$ GeV

Inflation model building

Such a low-scale inflation require extremely flat potential,

- $\epsilon \equiv \frac{\Lambda}{\tau}$
- And extremely small field inflation,
	- ᆚ

$$
\frac{M_{\rm pl}^2}{2}\left(\frac{V'}{V}\right)^2=\frac{r}{16}
$$

$$
\frac{\Delta\phi}{M_{\rm pl}}\lesssim 10^{-6}.
$$

With some mild assumptions about reheating, we also have

 $T_{\rm reh}$ $<$

Constrains baryogenesis scenario where baryon asymmetry comes from asymmetric decay of thermal particles.

e.g. leptogenesis: $\delta \equiv \frac{\Gamma_{N-}}{\Gamma_{N-}}$

[Davidson & Ibarra bound '0 $\delta \lesssim \frac{3}{8\pi} \frac{M_N m_i}{v^2}$

$$
H_{\rm inf} \lesssim 10^8 \; {\rm GeV}
$$

$$
\frac{\rightarrow Hv - \Gamma_{N \rightarrow H\bar{v}}}{\rightarrow Hv + \Gamma_{N \rightarrow H\bar{v}}}
$$

$$
2]
$$

$$
\stackrel{^{\prime\prime}{}}{=} \Rightarrow T_\text{reh}\gtrsim 10^{8-10}~\text{GeV}
$$

Cosmological implications of $H_{\text{inf}} \lesssim 10^8$ GeV

thermal leptogenesis