Parity Domain Walls and the Cosmology of Nelson-Barr based on [2212.03882]

With Pouya Asadi, Samuel Homiller, and Matthew Reece

The Early Universe: a window to new physics, October 21, 2023

Qianshu Lu Institute for Advanced Study and New York University

The Strong CP Problem

The quark sector of the Standard Model has two possible sources of CP violation:

- The complex phase $\delta_{\rm CKM}$ in the CKM matrix
- $\bar{\theta} = \theta + \arg \det(m_u) + \arg \det(m_d)$, where θ comes from

$$\frac{\theta}{16\pi^2} \int \mathrm{d}^4 x \,\mathrm{tr}\left(G_{\mu\nu}G^{\mu\nu}\right)$$

The Strong CP problem: $\delta_{\rm CKM} \sim \mathcal{O}(1)$ while $\bar{\theta} \lesssim 10^{-10}$

To CP or not CP

 $CP: \delta_{CKM}$ and θ both O(1) at tree-level axion dynamically relaxes $\bar{\theta}$ to zero [Pecci & Quinn '77]

> light degree of freedom well studied, rich phenomenology

Two sectors of solution to the strong CP problem, depending on whether CP(or sometimes just P) is a true symmetry of nature

To CP or not CP

Two sectors of solution to the strong CP problem, depending on whether CP(or sometimes just P) is a true symmetry of nature

 $CP: \delta_{CKM}$ and θ both O(1) at tree-level axion dynamically relaxes $\bar{\theta}$ to zero [Pecci & Quinn '77]

light degree of freedom well studied, rich phenomenology CP: $\delta_{\rm CKM}$ and $\bar{\theta}$ both 0 at tree-level $\delta_{\rm CKM}$ generated from spontaneous breaking of CP [Nelson '84, Barr '84] Phenomenological consequences less explored

The story/plan in one slide

Scale of $\langle CP \rangle$ tied with scale of inflation

cosmological consequences associated with the "quality" of Nelson-Barr models

[McNamara & Reece 2212.00039] Domain walls from spontaneous breaking of parity are absolutely stable, even when parity is gauged

Part 1: Stability of Parity Domain Walls [McNamara & Reece 2212.00039]

Domain walls are dangerous

Absolutely stable domain walls will dominate the universe and contradict Standard Cosmology if

 $v \gtrsim 1 \mathrm{MeV}$

Getting rid of domain walls: internal symmetry

Domain walls from spontaneous breaking of internal symmetry

(e.g. $\mathbb{Z}_2 \rightarrow 1$)

Getting rid of domain walls: internal symmetry Domain walls from spontaneous breaking of internal symmetry (e.g. $\mathbb{Z}_2 \rightarrow 1$) Global: DWs are stable (if explicit breaking, needs to be protected)

Domain walls from spontaneous breaking of internal symmetry

Gauged: DW destroyed by strings $G \to \mathbb{Z}_2 \to 1$

Domain walls from spontaneous breaking of internal symmetry

Gauged: DW destroyed by strings $G \to \mathbb{Z}_2 \to 1$

Inflate away

Getting rid of domain walls: Parity symmetry

Domain walls from spontaneous breaking of parity (or parity with any internal symmetry attached to it)

Global: DWs are stable

[McNamara & Reece 2212.00039] Parity string does not exist

Gauged:

Inflate away

Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold

$$g_{i \to j}^P = \operatorname{sign} \det \left(\frac{\partial x_j^{\nu}}{\partial x_i^{\mu}} \right) \in \mathbb{Z}_2$$

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

$$g_{i \to j}^P = \operatorname{sign} \det \left(\frac{\partial x_j^{\nu}}{\partial x_i^{\mu}} \right) \in \mathbb{Z}_2$$

Non-orientable: Going around a cycle forces a parity transformation

- Internal symmetry: (background) gauge field configuration can be chosen independently of the spacetime manifold
- Parity: the spacetime manifold *determines* the gauge field configuration

$$g_{i \to j}^P = \operatorname{sign} \det \left(\frac{\partial x_j^{\nu}}{\partial x_i^{\mu}} \right) \in \mathbb{Z}_2$$

Orientable: No parity transformation Non-orientable: Going around a cycle forces a parity transformation along any cycle

To open a hole in a parity domain wall, must go through topology change of the underlying manifold

String-like object cannot cause parity flip

Let's assume a parity string exist.

We want the string to implement a parity transformation as we go around it, along trajectory C.

String-like object cannot cause parity flip

- Parity transformation in up-down or left-right direction will destroy the string configuration
- The only direction left is front-back: but there is no continuous way to do a front-back flip as you traverse a circle

String-like object cannot cause parity flip

- Parity transformation in up-down or left-right direction will destroy the string configuration
- The only direction left is front-back: but there is no continuous way to do a front-back flip as you traverse a circle
- all closed, 1-dimensional manifolds are orientable, i.e. parity string cannot exist

Getting rid of domain walls: Parity symmetry

Domain walls from spontaneous breaking of parity (or parity with any internal symmetry attached to it)

[McNamara & Reece 2212.00039] Parity string does not exist

Inflate away

Part 2: Nelson-Barr Quality Problem and Cosmology

A Minimal Nelson-Barr construction Bento, Branco, Parada (BBP) '91

- Add to SM a pair of vector-like fields with quantum numbers of bottom-type quarks, $D \ \overline{D}$ and N pesudoscalars η_a
 - Assume CP symmetry, and a discrete symmetry \mathbb{Z}_N $\eta_a \to e^{2\pi i k/N} \eta_a, \quad D \to e^{-2\pi i k/N} D, \quad \bar{D} \to e^{2\pi i k/N} \bar{D}$
 - The down-type quark Lagrangian is then
 - $\mathcal{L} \supset \mu_D \bar{D} D + (\lambda_d)^i_i Q_i H^c \bar{d}^j f^a_i \eta_a D \bar{d}^i + \text{h.c}$
 - where all parameters are real because of CP $Q_i H^c \overline{D} \eta_a D D$ terms forbidden because of \mathbb{Z}_N

A Minimal Nelson-Barr construction Bento, Branco, Parada (BBP) '91 Assume that the scaler potential generates complex vevs, $\langle \eta_a \rangle$

At tree level,
$$\mathcal{L} \supset (Q \mid I)$$

- $D\left(\begin{array}{cc}\lambda_d v/\sqrt{2} & 0\\\sum_a f_i^a \langle \eta_a \rangle & \mu_D\end{array}\right) \begin{pmatrix} d\\ \bar{D} \end{pmatrix}$ $\equiv \begin{pmatrix} Q & D \end{pmatrix} \mathcal{M}_0 \begin{pmatrix} \bar{d} \\ \bar{D} \end{pmatrix}$
- $\Rightarrow \bar{\theta} = \theta + \arg \det \mathcal{M}_0 = 0$ /
- Effective mass matrix for the Standard Model quarks:

$$\left(m_0^2\right)_j^i = \left(m_d\right)_k^i \left(\delta_l^k + \frac{F^{\dagger k}F_l}{F_pF^{\dagger p} + \mu_D^2}\right) \left(m_d^T\right)_j^l, \quad F_i \equiv \sum_a f_i^a \left<\eta_a\right>$$

 $\mathcal{O}(1)$ complex phase

The Nelson-Barr "Quality" Problem

- Corrections from higher-dimensional operators to θ : $\frac{1}{\Lambda_{\rm EFT}} \eta_a^{\dagger} \eta_b \bar{D} D, \quad \frac{1}{\Lambda_{\rm EFT}} \eta_a^{\dagger} Q_i H^c \bar{D}$
 - From dimensional analysis: $\Delta \bar{\theta} \sim \frac{\Lambda_{\rm CP}}{\Lambda_{\rm EFT}}$
 - CP breaking scale cannot be too large:
 - $\Lambda_{\rm EFT} = M_{\rm pl} \Rightarrow \Lambda_{\rm CP} \lesssim 10^8 {\rm GeV}$

Cosmological implications of $H_{inf} \leq 10^8 \text{ GeV}$

Inflation model building

 $r \equiv \frac{\mathcal{P}_T}{\mathcal{P}_C}$

Current bound from BICEP/Keck:

From the constraint that inflation happens after spontaneous CP breaking:

 $r \leq 1.7 \times 10$

Tensor-to-scalar ratio directly measure the scale of inflation:

$$\frac{F}{S} \approx 10^8 \frac{H_{\rm inf}^2}{M_{\rm pl}^2}$$

- r < 0.036

$$)^{-13} \left(\frac{\Lambda_{\rm CP}}{10^8 \ {\rm GeV}} \right)^2$$

Cosmological implications of $H_{inf} \leq 10^8 \text{ GeV}$

Gravitational waves from cosmic string

Image from [Cui, Lewicki, Morrissey, Wells '19]

Detection of gravitational wave from cosmic string rules out minimal Nelson-Barr

Cosmological implications of $H_{inf} \leq 10^8 \text{ GeV}$ Gravitational waves from OTHER domain walls

Calculation method from [Hiramatsu, Kawasaki, Saikawa '13]

Challenges: keeping θ small enough, fast annihilation of DWs, etc

Two possible solutions: sequester CP breaking in a hidden sector

spontaneous CP breaking in hidden sector

Inflation to remove domain walls

spontaneous CP breaking in our sector $\Lambda_{\rm CP} \lesssim 10^8 {
m ~GeV}$ applies here

visible sector domain walls annihilate due to effective explicit CP breaking

To make inflation high scale again

- 2. Alleviate quality problem by forbidding higher-dimensional operators: chiral Nelson-Barr models
 - Chirally charging D, \bar{D} under a new symmetry $U(1)_X$ will forbid the dimension-5 operators $\frac{1}{\Lambda_{\rm EFT}} \eta_a^{\dagger} \eta_b \bar{D} D,$

 $\mathcal{L} \supset -y_D \rho D$

Two possible solutions:

$$\frac{1}{\Lambda_{\rm EFT}} \eta^{\dagger}_{a} Q_{i} H^{c} \bar{D}$$

Need a new scalar ρ to give masses to D, D

$$\bar{D}, \quad \mu_D = y_D \langle \rho \rangle$$

The rest of the model is the same as the minimal Nelson-Barr construction

See also [Valenti, Vecchi '21]

To make inflation high scale again

Chiral Nelson-Barr

To cancel anomalies, need to			
		$SU(3)_c$	SU
	D	3	_
	\bar{D}	$\overline{3}$	-
	B	3	-
	\bar{B}	$\overline{3}$	_
	ho		-
	η_a		-

 $U(1)_X$ is taken to be a linear combination of hyper charge and B-L, which is always anomaly free for SM

add another set of fermions, *B*, *B* $U(1)_Y \quad U(1)_X$ $(2)_{L}$ -1/3 -1+1/3 -5+1/3 +1 -1/3+5+60 +20

To make inflation high scale again

Chiral Nelson-Barr

$$\eta_a^{\dagger}\eta_b\rho D\bar{D}, \quad \eta_a^{\dagger}\mu_b$$

$$\Delta \bar{\theta} \simeq \frac{1}{y_D} \frac{\Lambda_{\rm CP}^2}{\Lambda_{\rm EFT}^2}$$

- All possible dimension-5 operators are forbidden. Quality problem arise again at dimension-6:
 - $\rho Q_i H^c \overline{D}, \quad \eta_a \eta_b \eta_c^{\dagger} D \overline{d}_i$
 - Correction to θ is now

$$\Rightarrow \Lambda_{\rm CP} \lesssim 10^{13} \, {\rm GeV}$$

Now the scale of CP breaking is high enough to recover most of the cosmology we are familiar with

Conclusion

- Despite the long history of the Nelson-Barr mechanism, consequences of spontaneous parity breaking has only been clarified recently
- Spontaneous breaking of CP leads to exactly stable domain walls [McNamara & Reece 2212.00039], which must be inflated away
- Nelson-Barr quality problem: the scale of spontaneous CP breaking cannot be too high
- These facts lead to phenomenological consequences of otherwise unconstrained Nelson-Barr models
- Chiral Nelson-Barr models is one set of solution to the domain wallquality problem. Other possibilities and their phenomenological consequences remain to be explored.

Cosmological implications of $H_{inf} \lesssim 10^8 \text{ GeV}$

Inflation model building

Such a low-scale inflation require extremely flat potential,

- $\epsilon \equiv -$
- And extremely small field inflation,

$$\frac{M_{\rm pl}^2}{2} \left(\frac{V'}{V}\right)^2 = \frac{r}{16}$$

$$\frac{\Delta\phi}{M_{\rm pl}} \lesssim 10^{-6}.$$

Cosmological implications of $H_{inf} \lesssim 10^8 \text{ GeV}$

thermal leptogenesis

With some mild assumptions about reheating, we also have

 $T_{\rm reh} \leq$

Constrains baryogenesis scenario where baryon asymmetry comes from asymmetric decay of thermal particles.

e.g. leptogenesis: $\delta \equiv \frac{\Gamma_{N-1}}{\Gamma_{N-1}}$

[Davidson & Ibarra bound '0 $\delta \lesssim \frac{3}{8\pi} \frac{M_N m_v}{v^2}$

$$H_{\rm inf} \lesssim 10^8 {
m GeV}$$

$$\frac{\partial Hv - \Gamma_{N \to H\bar{v}}}{\partial Hv + \Gamma_{N \to H\bar{v}}}$$

$$\frac{v}{r} \Rightarrow T_{\rm reh} \gtrsim 10^{8-10} \,\,{\rm GeV}$$