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Quantum fluctuations of a scalar field + inflation



Quantum fluctuations of a scalar field + inflation

Anisotropy maps are windows into inflationary physics



Adiabatic nature of known datasets

Current observations tell us that density perturbations in all Standard Model (SM) species

and Dark Matter (DM) originate from the same inflationary fluctuation (e.g. the inflaton).
Planck,1807.06211

Future datasets based SM and DM species (line-intensity maps, CvB) will also be
adiabatic.

Detection of new inflationary physics in these future maps is already constrained from
non-detection in CMB.

Could there be cosmological anisotropy maps very different from the CMB (dominantly
isocurvature)?



Something that is...

 (Copiously produced in the early universe
* Free-streaming (does not thermalize with SM and DM)

 Could be detectable with the technology that we have today
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GGravitational waves!
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Background: Source and anisotropy of gravitational wave background (GWB)
A simple model that can produce isocurvature GWB
Tradeoff: large isocurvature leads to a suppression of the GWB signal

Our model: weakens this tradeoff, thereby improving detection prospects of highly
isocurvature GWB



Gravitational waves from the early universe

 We focus on first-order phase transitions (PT) as sources of GW.
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Gravitational waves from the early universe

We focus on first-order phase transitions (PT) as sources of GW.
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First order phase transitions are dramatic.

Phase transitions are “instantaneous”, giving a 2D anisotropy map (analogous to CMB)
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Recap: CMB anisotropies
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GWB anisotropies
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Isocurvature GWB anisotropy

Surface of constant temperature Surface of constant critical
at last scattering temperature at PT
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Isocurvature GWB anisotropy

Uncorrelated large-scale fluctuations — another light field
from inflation

Interesting features such as tilt, scale-invariance breaking

feature, non-Gaussianity — new signatures of physics from
inflation

L. Valbusa Dall’Armi et al 2021
S. Kumar, R. Sundrum and Y. Tsai 2021
AB, R. Sundrum 2022
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A new light field from inflation: ALP (y)
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A new light field from inflation: ALP (y)
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A model of isocurvature GWB

Geller, Hook, Sundrum, Tsai 1803.10780
log(p)

Inflaton ¢

ALP y
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log(a)
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A model of isocurvature GWB
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Large isocurvature Is more interesting
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Large isocurvature Is more interesting
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The tradeoft
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M. Breitbach et al. 1811.11175

M. Fairbairn et al. 1901.11038
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The tradeoff

Geller et al. 1803.10780
M. Breitbach et al. 1811.11175
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The solution
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Utilize slower dilution of matter compared to radiation

AB, R. Sundrum: JHEP 06 (2023) 029
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PT sector dominates
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log(a)
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PT sector dominates
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Improvement in the GWB signal

Dashed lines: First model

Solid lines:; eMD model

Sgw ~ 107%, for ~ 107"
Sgw ~ 107%, fop ~ 107

Sgw ~ 1071, for ~ 1074



Primordial black holes

Enhanced curvature
perturbation
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Require 5)( < 0.01 on small scales
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Enhanced curvature
perturbation
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Primordial black holes
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Summary and future directions

GWB from phase transitions could be highly anisotropic.

Country to the previous belief, such highly anisotropic GWB could be within the reach of
detectors like LISA.

In the future, it would be interesting to extend the study of isocurvature GWB from other
SOUrces.

| invite you to think about other kinds of isocurvature maps, which may reveal new
physics from the inflationary era.
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Summary and future directions

GWB from phase transitions could be highly anisotropic.

Country to the previous belief, such highly anisotropic GWB could be within the reach of
detectors like LISA.

In the future, it would be interesting to extend the study of isocurvature GWB from other
SOUrces.

| invite you to think about other kinds of isocurvature maps, which may reveal new
physics from the inflationary era.

Thank you!
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Back-up slides
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Detectability of large anisotropy

Dashed lines: Simple model

Solid lines: eMD model

Saw ~ 1074 for ~ 107!
Saw ~ 1072, for ~ 1073

Sgw ~ 107", fop ~ 107



Constraints on eMD model: small scale structure

During eMD, 0,,,, & a, could form structures on small
log(p) scales with potential observational constraints

However, several mechanism erase these large fluctuations
after the decay of non-PT sector into SM:

- Damping of radiation perturbation during the decay
Fan, Ozsoy,and Watson 14

EMD

, Non-PT—SM - Frictional damping during kinetic decoupling of DM
GW : : Loeb, Zaldarriaga ’05, Bertschinger 06
. : - Free-streaming of DM after kinetic decoupling

acyp  10g(@) Loeb, Zaldarriaga '05, Bertschinger 06

- Silk damping in photons and baryons
Silk '68, Hu, Sugiyama '96

Decay before DM decoupling = 74.. 2 100 GeV
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log(p)

Secondary (induced) GW

EMD

Non-PT—SM

GW sourced by scalar perturbations at second order, larger
contribution from early matter domination

Baumann et al 0703290,
(e ~10-5 Udec 54 Assadullahi, Wands 0901.0989

GW/peak §% Kohri, Terada 1804.08577
Amnd

eMD imprints unique features in the frequency spectrum of

Secondary GW, Gouttenoire, Servant, Simakachorn 2111.01150
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Qawh?
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Bubbles are unresolvable

%1 Caution: Zoomed in!

> 10!% bubble collisions/arcsec?

—> Bubbles are unresolvable
sources . getting a course
grained picture of GWB
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Earlier production + free-streaming of GW — large range of scales is unaltered by sub-horizon

physics
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http://PTPlot.org

Energy density in GWB from PT (2)

Power released In dEGW ~ G d3Q
bubble collision At N

dt3

5
Quadrapole moment Q~ Pl —

Typical time scale /length scale
(Duration of the PT)

GW energy density dEGW AtpT GNﬂlat
released in bubble PGwW 7 32
collision
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Astrophysical foregrounds in mHz range
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Inspiraling stellar-mass BH

LIGO-Virgo
Einstein Telescope
LISA KAGRA
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Giulia Cusin-, Irina Dvorkin, Cyril Pitrou, Jean-Philippe Uzan: 1904.07757v2
Also see: 2201.08782v from LISA working group
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Characteristic Strain
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