Making massive spin-2 particles from gravity during inflation & reheating

Andrew Long Rice University @ U of Florida IFT workshop Oct 20, 2023

read along: 2302.04390

motivation making dark matter from gravity

dark matter pulls on things

no evidence (yet) of dark matter bumping into things

<u>No dark matter bumping into things</u>

(notwithstanding hints of new physics, there's no overwhelming evidence)

3

the hypothesis:

what to call it?

[Submitted on 14 Oct 1998]

WIMPZILLAS!

Edward W. Kolb, Daniel J. H. Chung, Antonio Riotto

Despicable dark relics: generated by gravity with unconstrained masses

Malcolm Fairbairn¹, Kimmo Kainulainen^{2,4}, Tommi Markkanen³ and Sami Nurmi^{2,4} Published 3 April 2019 \cdot © 2019 IOP Publishing Ltd and Sissa Medialab

Production of purely gravitational dark matter: the case of fermion and vector boson

Yohei Ema, a,b Kazunori Nakayama c,d and Yong Tang c

Completely dark matter from rapid-turn multifield inflation

Edward W. Kolb,^a Andrew J. Long,^b Evan McDonough^c and Guillaume Payeur^{c,d}

a 2018 play by Martin McDonagh

the problem:

where did all the dark matter come from?

(how do we use gravity to make dark matter?)

ideas ...

7

Gravitational production of massive spin-2

scalar spectator inflationary quantum fluctuations

Energy spectrum of inflationary fluctuations

Let's turn up the mass ...

Takeaway

For models with m ~~ H_{inf} , most of the energy is carried by modes that are on the Hubble scale at the end of inflation.

Getting accurate predictions for the total particle number, requires a more careful modeling of:

1. The end of inflation & transition into the reheating epoch

11

2. The evolution of the spectator field & its energy

spin-0 particles example: alpha attractor

Example: alpha attractor

 $V_T(\phi) = \alpha \mu^2 M_p^2 \tanh^2 \frac{\phi}{\sqrt{6\alpha} M_p}$ T-model alpha attractor T Model $m_{\phi} \approx 6. \times 10^{-6} M_p$ $4. \times 10^{-9}$ $m_{\varphi}(t - t_e) = 0$ Quadratic Inflation $\begin{cases} \phi(t) \\ a(t) \end{cases}$ $3. \times 10^{-9}$ $V(\phi) \ (M_p^4)$ 100 \Rightarrow $\alpha = \infty$ $2. \times 10^{-9}$ $-a/a_e$ H/H_e $|R|/6H^{2}$ $\alpha = 10$ FRW background $|\varphi|/M_{\text{Pl}}$ $1. \times 10^{-9}$ $\begin{array}{c} 0 \\ \eta/a_e H_e \end{array}$ $\alpha = 1$ 0 -20 -10 10 200 $\phi(M_p)$

[Ling & AL (2101.11621)]

Scalar spectator (dark matter)

FRW: $(ds)^2 = a(\eta)^2 [(d\eta)^2 - |dx|^2]$

covariant action

$$S = \int \mathrm{d}^4 x \, \sqrt{-g} \left[\frac{1}{2} g^{\mu\nu} \partial_\mu \chi \partial_\nu \chi - \frac{1}{2} m_\chi^2 \chi^2 \right]$$

Fourier decomposition

$$\chi(\eta, \boldsymbol{x}) = \frac{1}{a(\eta)} \int \frac{\mathrm{d}^3 \boldsymbol{k}}{(2\pi)^3} a_{\boldsymbol{k}} \chi_k(\eta) \, e^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x}} + \mathrm{c.c.}$$

equations of motion

$$\chi_k''(\eta) + \omega_k^2(\eta) \,\chi_k(\eta) = 0$$
$$\omega_k^2(\eta) = k^2 + a(\eta)^2 m_\chi^2 + \frac{1}{6}a(\eta)^2 R(\eta)$$

a harmonic oscillator with time-dependent frequency

comoving number density

$$|\beta_k|^2 = \frac{\omega_k}{2} |\chi_k|^2 + \frac{1}{2\omega_k} |\partial_\eta \chi_k|^2 - \frac{1}{2}$$
$$a^3 n = \int d\ln k \, \frac{k^3}{2\pi^2} |\beta_k|^2$$

Gravitational production of massive spin-2

14

Numerical results

comoving number density

Gravitational production of massive spin-2

CMB isocurvature

Gravitational production of massive spin-2

Andrew Long (Rice University)

[Ling & AL (2101.11621)]

Parameter space

[Ling & AL (2101.11621)]

Gravitational production of massive spin-2

going non-minimal

[Kolb, AL, McDonough, & Payeur (2022)], [Garcia, Pierre, & Verner (2023)] see also: [Markkanen, Rajantie, & Tenkanen (2018); Tenkanen (2019)]

isocurvature constraints on ultra-light scalar GPP can be avoided by introducing a "small" non-minimal coupling to gravity

18

Gravitational production of massive spin-2

CGPP for particles w/ spin

spin-0 (scalar field)

$$\mathscr{L} = \frac{1}{2}g^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi - \frac{1}{2}m^{2}\varphi^{2} + \frac{1}{2}\xi\varphi^{2}R$$

spin-1/2 (spinor field)

$$\mathscr{L} = \frac{i}{2} \bar{\Psi} \underline{\gamma}^{\mu} (\nabla_{\mu} \Psi) - \frac{1}{2} m \bar{\Psi} \Psi + \text{h.c.}$$

spin-1 (vector field)

Chung, Kolb, & Riotto (1998) Kuzmin & Tkachev (1998) Herring, Boyanovsky, & Zentner (2020) Brandenberger, Kamali, & Ramos (2023)

Kuzmin & Tkachev (1998) Chung, Everett, Yoo, & Zhou (2011) Hashiba, Ling, & AL (2206.14204)

 $S = \int \mathrm{d}^4 x \sqrt{-g} \mathscr{L}$

Dimopoulos (2006) – not for DM; Graham, Mardon, & Rajendran (2016); Ahmed, Grzadkowski, & Socha (2020); Kolb & AL (2009.03828)

$$\mathscr{L} = -\frac{1}{4}g^{\mu\alpha}g^{\nu\beta}F_{\mu\nu}F_{\alpha\beta} + \frac{1}{2}m^2g^{\mu\nu}A_{\mu}A_{\nu} - \frac{1}{2}\xi_1Rg^{\mu\nu}A_{\mu}A_{\nu} - \frac{1}{2}\xi_2R^{\mu\nu}A_{\mu}A_{\nu}$$

spin-3/2 (vector-spinor field)

Kallosh, Kofman, Linde, & Van Proeyen (1999); Giudice, Riotto, & Tkachev (1999); Lemoine (1999); Kolb, AL, & McDonough (2102.10113); Kaneta, Ke, Mambrini, Olive, Verner (2023)

$$\mathscr{L} = \frac{i}{4} \bar{\Psi}_{\mu} \left(\underline{\gamma}^{\mu} \underline{\gamma}^{\rho} \underline{\gamma}^{\sigma} - \underline{\gamma}^{\sigma} \underline{\gamma}^{\rho} \underline{\gamma}^{\mu} \right) (\nabla_{\!\!\rho} \Psi_{\sigma}) + \frac{1}{2} m \bar{\Psi}_{\mu} \underline{\gamma}^{\mu} \underline{\gamma}^{\sigma} \Psi_{\sigma} + \text{h.c.}$$

spin-2 (tensor field)

Alexander, Jenks, McDonough (2020) Kolb, Ling, AL, & Rosen (2302.04390)

larger reps (Kalb-Ramond)

Capanelli, Jenks, Kolb, McDonough (2023)

$$\mathscr{L} = \frac{1}{2} \nabla h_{\mu\nu} \nabla h^{\mu\nu} - \frac{1}{2} m^2 h_{\mu\nu} h^{\mu\nu} + \cdots$$

Gravitational production of massive spin-2

Andrew Long (Rice University)

massive spin-2 particles on the hunt for a theory

General relativity

Covariant action for metric field $g_{\mu\nu}$

$$S[g_{\mu\nu}] = \int \mathrm{d}^4 x \, \sqrt{-g} \left[\frac{1}{2} M_P^2 \, R[g] \right]$$

Linearize around Minkowski spacetime

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{2}{M_P} h_{\mu\nu}$$
$$S[h_{\mu\nu}] = \int d^4x \left[-\frac{1}{2} \partial_\lambda h_{\mu\nu} \partial^\lambda h^{\mu\nu} + \partial_\mu h^{\nu\lambda} \partial_\nu h^\mu_{\ \lambda} - \partial_\mu h^{\mu\nu} \partial_\nu h + \frac{1}{2} \partial_\mu h \partial^\mu h + O(h^3) \right]$$
$$(h = \eta^{\mu\nu} h_{\mu\nu})$$

21

Counting degrees of freedom

$$h_{\mu\nu} \sim 16_{\text{components}} - 6_{\text{symmetric}} - 4_{\text{gauge}} - 4_{\text{constraint}} = 2_{\text{dof}}$$

 \rightarrow these are the two polarization modes of the massless graviton (x & + or h = +2, -2)

Adding a mass

Try to add mass terms

$$\delta S[h_{\mu\nu}] = \int d^4x \left[-\frac{1}{2}m_1^2 h_{\mu\nu} h^{\mu\nu} - \frac{1}{2}m_2^2 h^{\mu}_{\mu} h^{\nu}_{\nu} \right]$$

A poor choice of these mass parameters leads to a theory with a ghost (in addition to a massive spin-2)

$$m_{
m ghost}^2 = -rac{1}{2} rac{m_1^2 + 4m_2^2}{m_1^2 + m_2^2}$$
 (Boulware-Deser ghost)

A clever choice of parameters avoids the ghost and yields a healthy theory of massive spin-2 field

$$S_{\rm FP}[h_{\mu\nu}] = \int d^4x \left[-\frac{1}{2} \partial_\lambda h_{\mu\nu} \partial^\lambda h^{\mu\nu} + \partial_\mu h^{\nu\lambda} \partial_\nu h^{\mu}_{\ \lambda} - \partial_\mu h^{\mu\nu} \partial_\nu h + \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{2} m^2 \left(h_{\mu\nu} h^{\mu\nu} - h^2 \right) \right]$$

$$(Fierz-Pauli action)$$

$$h_{\mu\nu} \sim 16_{\rm components} - 6_{\rm symmetric} - 1_{\rm gauge} - 4_{\rm constraint} = 5_{\rm dof}$$

22

 \rightarrow the five polarization modes of a massive graviton (helicity = -2, -1, 0, +1, +2)

Gravitational production of massive spin-2

Going to FRW background – failed attempt

(Fierz-Pauli action)

$$S_{\rm FP}[h_{\mu\nu}] = \int \mathrm{d}^4x \left[-\frac{1}{2} \partial_\lambda h_{\mu\nu} \partial^\lambda h^{\mu\nu} + \partial_\mu h^{\nu\lambda} \partial_\nu h^\mu_{\ \lambda} - \partial_\mu h^{\mu\nu} \partial_\nu h + \frac{1}{2} \partial_\mu h \partial^\mu h - \frac{1}{2} m^2 \left(h_{\mu\nu} h^{\mu\nu} - h^2 \right) \right]$$

to FRW covariant derivatives

$$\nabla_{\lambda}h_{\mu\nu} = \partial_{\lambda}h_{\mu\nu} - \Gamma^{\rho}_{\lambda\mu}h_{\rho\nu} - \Gamma^{\rho}_{\lambda\nu}h_{\mu\rho}$$

$$S[h_{\mu\nu}] = \int \mathrm{d}^4x \left[-\frac{1}{2} \nabla_\lambda h_{\mu\nu} \nabla^\lambda h^{\mu\nu} + \nabla_\mu h^{\nu\lambda} \nabla_\nu h^\mu_{\ \lambda} - \nabla_\mu h^{\mu\nu} \nabla_\nu h + \frac{1}{2} \nabla_\mu h \nabla^\mu h - \frac{1}{2} m^2 \left(h_{\mu\nu} h^{\mu\nu} - h^2 \right) \right]$$

This procedure would re-introduce the Boulware-Deser ghost. Going to an FRW bkg without also introducing the matter sector is a violation of gauge symmetry. $(\delta h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu})$

Successful attempt

Let's add a matter sector

$$S[g_{\mu\nu}] = \int d^4x \sqrt{-g} \left[\frac{1}{2} M_P^2 R[g] - \frac{1}{2} g^{\mu\nu} \nabla_\mu \phi \nabla_\nu \phi - V(\phi) \right]$$

Linearize around an FRW background

$$g_{\mu\nu} = \bar{g}_{\mu\nu}^{(\mathrm{FRW})} + \frac{2}{M_P} u_{\mu\nu} \quad \text{and} \quad \phi = \bar{\phi}^{(\mathrm{FRW})} + \varphi_u$$

Resulting quadratic action

$$\begin{aligned} \mathcal{L}_{\text{massless}}^{(2)} &= \mathcal{L}_{uu}^{(2)} + \mathcal{L}_{u\varphi_{u}}^{(2)} + \mathcal{L}_{\varphi_{u}\varphi_{u}}^{(2)} \\ \mathcal{L}_{uu}^{(2)} &= -\frac{1}{2} \nabla_{\lambda} u_{\mu\nu} \nabla^{\lambda} u^{\mu\nu} + \nabla_{\mu} u^{\nu\lambda} \nabla_{\nu} u^{\mu}_{\lambda} - \nabla_{\mu} u^{\mu\nu} \nabla_{\nu} u + \frac{1}{2} \nabla_{\mu} u \nabla^{\mu} u \\ &+ \left(\bar{R}_{\mu\nu} - \frac{1}{M_{P}^{2}} \nabla_{\mu} \bar{\phi} \nabla_{\nu} \bar{\phi} \right) \left(u^{\mu\lambda} u_{\lambda}^{\nu} - \frac{1}{2} u^{\mu\nu} u \right) , \\ \mathcal{L}_{u\varphi_{u}}^{(2)} &= \frac{1}{M_{P}} \left[\left(\nabla_{\mu} \bar{\phi} \nabla_{\nu} \varphi_{u} + \nabla_{\nu} \bar{\phi} \nabla_{\mu} \varphi_{u} \right) \left(u^{\mu\nu} - \frac{1}{2} \bar{g}^{\mu\nu} u \right) - V'(\bar{\phi}) \varphi_{u} u \right] , \\ \mathcal{L}_{\varphi_{u}\varphi_{u}}^{(2)} &= -\frac{1}{2} \nabla_{\mu} \varphi_{u} \nabla^{\mu} \varphi_{u} - \frac{1}{2} V''(\bar{\phi}) \varphi_{u}^{2} . \end{aligned}$$

(massless spin-2 graviton + inflaton perturbation)

(massive spin-2 + inflaton perturbation)

Gravitational production of massive spin-2

24

Andrew Long (Rice University)

Another approach: ghost-free bigravity

Field content: two metrics & two scalars

$$g_{\mu
u}$$
, $f_{\mu
u}$, ϕ_g , ϕ_f

A theory of bigravity with a minimal coupling to matter

$$\begin{split} S &= \int \mathrm{d}^4 x \left[\frac{1}{2} M_g^2 \sqrt{-g} \, R[g] \, + \, \frac{1}{2} M_f^2 \sqrt{-f} \, R[f] \quad \text{(metric kinetic terms)} \\ &- m^2 M_*^2 \sqrt{-g} \, V(\mathbb{X}; \, \beta_n) \quad \text{(metric interactions)} \\ &+ \sqrt{-g} \, \mathcal{L}_g(g, \phi_g) \, + \, \sqrt{-f} \, \mathcal{L}_f(f, \phi_f) \right] \quad \text{(coupling to matter)} \end{split}$$

Matter-sector Lagrangians

$$\mathcal{L}_g(g,\phi_g) = -\frac{1}{2}g^{\mu\nu}\nabla_\mu\phi_g\nabla_\nu\phi_g - V_g(\phi_g)$$

$$\mathcal{L}_f(f,\phi_f) = -\frac{1}{2}f^{\mu\nu}\nabla_\mu\phi_f\nabla_\nu\phi_f - V_f(\phi_f) \qquad \left(\begin{array}{c} M_*^{-2} = M_g^{-2} + M_f^{-2} \\ M_P^2 = M_g^2 + M_f^2 \end{array}\right)$$

25

Gravitational production of massive spin-2

talk tomorrow by Siyang Ling (Rice U grad student)

Andrew Long (Rice University)

massive spin-2 particles CGPP & dark matter

Separate out the 5 different polarization modes

Perform a scalar-vector-tensor (SVT) decomposition

$$v_{\mu\nu}(\eta, \boldsymbol{x}) \sim \text{massive spin-2}$$

 $\sim (\text{helicity } \lambda = \pm 2) \oplus (\text{helicity } \lambda = \pm 1) \oplus (\text{helicity } \lambda = 0)$

Tensor sector

$$\chi_{k,\lambda}''(\eta) + \omega_k^2(\eta) \,\chi_{k,\lambda}(\eta) = 0 \quad \text{for } \lambda = \pm 2$$
$$\omega_k^2(\eta) = k^2 + a^2 m^2 + \frac{1}{6}a^2 R$$

Vector sector

$$\chi_{k,\lambda}''(\eta) + \omega_k^2(\eta) \chi_{k,\lambda}(\eta) = 0 \quad \text{for } \lambda = \pm 1$$

$$\omega_k^2(\eta) = k^2 + a^2 m^2 - f''/f \quad \text{where} \quad f = a^2/\sqrt{k^2 + a^2 m^2}$$

Scalar sector – it's complicated!

$$L_{S,\boldsymbol{k}} = K_{\Pi} |\tilde{\Pi}'|^2 + M_{\Pi} |\tilde{\Pi}|^2 + K_{\mathcal{B}} |\tilde{\mathcal{B}}'|^2 + M_{\mathcal{B}} |\tilde{\mathcal{B}}|^2 + \lambda_1 \tilde{\Pi}^* \tilde{\mathcal{B}}' + \lambda_0 \tilde{\Pi}^* \tilde{\mathcal{B}}'$$

Gravitational production of massive spin-2

A numerical example

28

Gravitational production of massive spin-2

Andrew Long (Rice University

Notable features:

- 1. Similar results for tensors & vectors
- 2. Low-k power law ~ k^3
- 3. High-k power law ~ $k^{-3/2}$ or $k^{-9/2}$

4. Wiggles!

Quantum interference fringes

The basic idea:

The inflaton field is in a state of indefinite particle number (coherent state). Many-to-two scatterings will interfere with one another. *This explains the wiggly features in spectra – they are interference fringes.*

What's getting calculated?

number density spectrum:

 $n_k \propto |\beta_k|^2$

Bogolubov coefficient:

$$\beta_k \approx \int_{-\infty}^{\infty} \mathrm{d}t \, \frac{\dot{\omega}_k}{2\omega_k} \, e^{-2i \int^t \mathrm{d}t' \, \omega_k/a}$$

stationary phase approx.:

$$\beta_k \approx \beta_k^{(1 \to 2)} + \beta_k^{(2 \to 2)} + \beta_k^{(3 \to 2)} + \cdots$$

34

Gravitational production of massive spin-2

Basso, Chung, Kolb, AL [2209.01713]

Quantum interference fringes

Basso, Chung, Kolb, AL [2209.01713]

Analytic results:

$$\beta_k^{(n \to 2)} = \mathcal{A}_k^{(n \to 2)} e^{i\Phi_k^{(n \to 2)}}$$
$$\Delta \Phi_k^{(n \to 2)} = \Phi_k^{(n \to 2)} - \Phi_{k,\text{leading}}^{(n \to 2)}$$

$$\mathcal{A}_{k}^{(1\to2)} = -\kappa_{1}^{-15/4} \, 3\alpha_{3} \sqrt{\frac{-\frac{i}{2}\pi}{\frac{1}{4} - r_{\chi}^{2}}} \, r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{1}^{-3}) \right) \,, \tag{4.3a}$$

$$\mathcal{A}_{k}^{(2\to2)} = \kappa_{2}^{-9/4} \frac{3}{16} \sqrt{\frac{-i\pi}{1-r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \frac{x_{0} + x_{1}r_{\chi}^{2} + x_{2}r_{\chi}^{4} - 416r_{\chi}^{6} + 384r_{\chi}^{8}}{1024(1-r_{\chi}^{2})^{2}} \kappa_{2}^{-3} + \mathcal{O}(\kappa_{2}^{-6}) \right) ,$$

$$(4.3b)$$

$$\mathcal{A}_{k}^{(3\to2)} = \kappa_{3}^{-15/4} \frac{\alpha_{3}}{9} \sqrt{\frac{-\frac{3}{2}i\pi}{\frac{9}{4} - r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{3}^{-3})\right) , \qquad (4.3c)$$

$$\mathcal{A}_{k}^{(4\to2)} = \kappa_{4}^{-21/4} \frac{3\left(-21 + 68\alpha_{3}^{2} + 24\alpha_{4} + 12r_{\chi}^{2}\right)}{4096} \sqrt{\frac{-2i\pi}{4 - r_{\chi}^{2}}} r_{\chi}^{2} \left(1 + \mathcal{O}(\kappa_{4}^{-3})\right) , \qquad (4.3d)$$

$$\Delta \Phi_k^{(1 \to 2)} = \kappa_1^{-3/2} \left(\frac{y_0^{(1)} + y_1^{(1)} r_\chi^2 - 1280 r_\chi^4}{480 \left(1 - 4r_\chi^2\right)} + z^{(1)} + \mathcal{O}(\kappa_1^{-3}) \right) , \qquad (4.4a)$$

$$\Delta \Phi_k^{(2 \to 2)} = \kappa_2^{-3/2} \left(\frac{y_0^{(2)} + y_1^{(2)} r_\chi^2 - 80 r_\chi^4}{960 \left(1 - r_\chi^2\right)} + z^{(2)} + \mathcal{O}(\kappa_2^{-3}) \right) , \qquad (4.4b)$$

$$\Delta \Phi_k^{(3\to2)} = \kappa_3^{-3/2} \left(\frac{y_0^{(3)} + y_1^{(3)} r_\chi^2 - 1280 r_\chi^4}{12960 \left(9 - 4r_\chi^2\right)} + z^{(3)} + \mathcal{O}(\kappa_3^{-3}) \right) , \qquad (4.4c)$$

$$\Delta \Phi_k^{(4\to2)} = \kappa_4^{-3/2} \left(\frac{y_0^{(4)} + y_1^{(4)} r_\chi^2 + y_2^{(4)} r_\chi^4 + 2588 r_\chi^6}{960 \left(4 - r_\chi^2\right) \left(-21 + 68\alpha_3^2 + 24\alpha_4 + 12r_\chi^2\right)} + z^{(4)} + \mathcal{O}(\kappa_4^{-3}) \right) , \quad (4.4d)$$

Quantum interference fringes

Basso, Chung, Kolb, AL [2209.01713]

Numerical validation:

What about the scalar sector?

(longitudinal polarization: $\lambda = 0$)

Scalar sector

Scalar metric perturbations mix with scalar inflaton perturbation

 L_S = a messy function of A, B, E, F, and φ_v

After imposing constraints (and a LOT of algebra) there are only two propagating degrees of freedom

$L_{S,\boldsymbol{k}} = K_{\Pi} |\tilde{\Pi}'|^2 + M_{\Pi} |\tilde{\Pi}|^2 + K_{\mathcal{B}} |\tilde{\mathcal{B}}'|^2 + M_{\mathcal{B}} |\tilde{\mathcal{B}}|^2 + \lambda_1 \tilde{\Pi}^* \tilde{\mathcal{B}}' + \lambda_0 \tilde{\Pi}^* \tilde{\mathcal{B}}$

$\begin{split} \kappa_{\varphi} &= \frac{a^{2}}{2} \frac{H^{2}k^{4} + 3a^{2}(m^{2} - m_{f}^{2})H^{2}k^{2} + \frac{3}{4}a^{4}m^{2}(6m^{2}H^{2} - m_{f}^{2})H^{2}}{(m^{2}H^{2} - m_{f}^{2})H^{2}k^{2} + \frac{3}{4}a^{4}m^{2}(6m^{2}H^{2} - m_{f}^{2})H^{2}k^{2} + \frac{3}{8}a^{4}m^{2}(6m^{2}H^{2} - m_{f}^{2})H^{2}m^{2}h^{2} + \frac{3}{8}m^{2}h^{2}}h^{2} $	$\begin{split} L_{2} &= \frac{a^{3}m^{2}\tilde{\phi}}{2M_{P}H} \frac{H^{2}k^{4} + \frac{3}{3}a^{2}\left(m^{2} - m_{H}^{2}\right)H^{2}k^{2}}{M^{2}k^{4} + 3a^{2}\left(m^{2} - m_{H}^{2}\right)H^{2}k^{2} + \frac{3}{8}a^{4}m^{2}\left(6m^{2}H^{2} - 4H^{2}m_{H}^{2} - m_{H}^{4}\right)} (3.17e) \\ L_{1} &= -\frac{a^{4}m^{2}\tilde{\phi}'}{M_{P}} \frac{(H^{2} - \frac{1}{4}m_{H}^{2} - \frac{1}{2}\frac{aHV'(\tilde{\phi})}{(\tilde{\phi})})k^{4} - \frac{3}{2}a^{2}\left(m^{2} - m_{H}^{2}\right)\left(H^{2} + \frac{1}{4}m_{H}^{2} + \frac{1}{2}\frac{aHV'(\tilde{\phi})}{\tilde{\phi}'}\right)k^{2}}{H^{2}k^{4} + 3a^{2}\left(m^{2} - m_{H}^{2}\right)H^{2}k^{2} + \frac{3}{8}a^{4}m^{2}\left(6m^{2}H^{2} - 4H^{2}m_{H}^{2} - m_{H}^{4}\right)} (3.17f) \\ L_{0} &= \frac{a^{3}m^{2}\tilde{\phi}'}{2M_{P}H} \frac{c_{10}k^{10} + c_{8}k^{8} + c_{6}k^{6} + c_{4}k^{4} + c_{2}k^{2}}{\left[H^{2}k^{4} + 3a^{2}\left(m^{2} - m_{H}^{2}\right)H^{2}k^{2} + \frac{3}{8}a^{4}m^{2}\left(6m^{2}H^{2} - 4H^{2}m_{H}^{2} - m_{H}^{4}\right)\right]^{2}} (3.17g) \\ c_{10} &= H^{4} (3.17h) \\ c_{8} &= \frac{1}{2}a^{2}H^{4}\left[\left(9m^{2} + 12H^{2} - 13m_{H}^{2}\right) - 4\frac{aHV'(\tilde{\phi})}{\tilde{\phi}'}\right] \\ c_{6} &= \frac{3}{8}a^{4}H^{2}\left[\left(18m^{4}H^{2} + 32m^{2}H^{4} + 64H^{6} - 48m^{2}H^{2}m_{H}^{2} - 64H^{4}m_{H}^{2} + m^{2}m_{H}^{4} + 28H^{2}m_{H}^{4}\right) \\ & + 8\left(-4m^{2}H^{2} + 4H^{4} + m^{2}m_{H}^{2}\right)\frac{aHV'(\tilde{\phi})}{\tilde{\phi}'}\right] \\ c_{4} &= \frac{3}{16}a^{6}m^{2}H^{2}\left[\left(18m^{4}H^{2} - 24m^{2}H^{4} + 256H^{6} - 54m^{2}H^{2}m_{H}^{2} - 160H^{4}m_{H}^{2} + 9m^{2}m_{H}^{4} + 60H^{2}m_{H}^{4} - 7m_{H}^{6}\right) \\ & + 4\left(-30m^{2}H^{2} + 32H^{4} + 12m^{2}m_{H}^{2}\right)\left(3m^{2} - 4H^{2} - m_{H}^{2}\right) \frac{aHV'(\tilde{\phi})}{\tilde{\phi}'}\right] \\ c_{2} &= \frac{9}{16}a^{8}m^{4}H^{2}\left(2H^{2} - m_{H}^{2}\right)\left[-\left(4H^{2} + m_{H}^{2}\right)\left(3m^{2} - 4H^{2} - m_{H}^{2}\right) + 4\left(-3m^{2} + 2H^{2} + 2m^{2}\right)\frac{aHV'(\tilde{\phi})}{\tilde{\phi}'}\right] \end{aligned}$
---	--

Gravitational production of massive spin-2

Andrew Long (Rice University)

Scalar sector

Scalar metric perturbations mix with scalar inflaton perturbation

 L_S = a messy function of A, B, E, F, and φ_v

After imposing constraints (and a LOT of algebra) there are only two propagating degrees of freedom

$$L_{S,\boldsymbol{k}} = K_{\Pi} |\tilde{\Pi}'|^2 + M_{\Pi} |\tilde{\Pi}|^2 + \boldsymbol{K}_{\mathcal{B}} |\tilde{\mathcal{B}}'|^2 + M_{\mathcal{B}} |\tilde{\mathcal{B}}|^2 + \lambda_1 \tilde{\Pi}^* \tilde{\mathcal{B}}' + \lambda_0 \tilde{\Pi}^* \tilde{\mathcal{B}}'$$

The second kinetic term coefficient is

$$K_{\mathcal{B}} = \frac{3a^6m^2(m^2 - m_H^2)}{4k^4 + 12a^2(m^2 - m_H^2)k^2 + 9a^4m^2(m^2 - m_H^2)}$$

and where we've defined: $m_H^2(\eta) = 2H(\eta)^2 [1 - \epsilon(\eta)]$ where $\epsilon(\eta) = -\dot{H}/H^2$

Beware of ghosts

A wrong-sign kinetic term leads to dangerous ghosts!

For massive spin-2 particles in FRW spacetime, ghost avoidance requires:

$$m^2 > m_H^2(\eta) = 2H(\eta)^2 \left[1 - \epsilon(\eta)
ight]$$
 where $\epsilon(\eta) = -\dot{H}/H^2$

- → Generalizes the Higuchi bound (for dS) to FRW spacetime
- After inflation $\varepsilon > 1$ and any positive m² is ghost-free
- → Implications for ultra-light spin-2 dark matter (e.g., time-dep mass)
- → Implications for Kaluza-Klein (compact extra dimensions)
- → Our numerical analysis focuses on $m^2 > 2 H_{inf}^2$ to avoid the ghost

Higuchi (1986) see also: Fasiello & Tolley (2013)

the S-sector that we noted previously in the T- and V-sectors.

Notable features:

- 1. Larger amplitude than T- or V-sectors
- 2. Lowering mass raises amplitude

Implications for spin-2 dark matter

Assume: massive spin-2 particles are cosmologically long-lived

Relic abundance

$$\Omega h^2 \approx (0.114) \left(\frac{m}{10^{10} \text{ GeV}}\right) \left(\frac{H_e}{10^{10} \text{ GeV}}\right) \left(\frac{T_{\text{RH}}}{10^8 \text{ GeV}}\right) \left(\frac{a^3 n}{a_e^3 H_e^3}\right)$$

Gravitational production of massive spin-2

42

Andrew Long (Rice University)

see also: Babichev et. al. (2016)

conclusion

Munich Institute for Astro-, Particle and BioPhysics

QUANTUM ASPECTS OF INFLATIONARY COSMOLOGY				
24 June - 19 July 2024 Andrew Long, Edward (Rocky) Kolb, Jun´ichi Yokoyama, Rachel Rosen, Viatcheslav (Slava) Mukhanov				
QUANTUM ASPECTS OF INFLATIONARY COSMOLOGY	Astrophysical and cosmological observations have revealed a wealth of information about the structure, composition, and evolution of the Universe. Although we can classify the ingredients that compose the Universe today, we don't yet know their origin. Their genesis must have been the early stages of the big bang			
 Overview Participants 	and involved particle physics beyond the standard model. This MIAPbP program is centered around topics that sit at the connection between particle physics and cosmology:			
👼 Schedule	1) cosmological initiation, 2) the end of inflation, 3) cosmological relics and			
Room reservation	4) gravitational particle production.			
	How did quantum fluctuations of the inflaton field provide the seeds for structure on cosmological scales? Did other fields play a role during inflation? How did their quantum fluctuations imprint on cosmological			
Registration open (Deadline 22 October 2023)	observables (e.g., non-Gaussianity) or survive as cosmological relics today (e.g., dark matter, matter/antimatter asymmetry)? How can these degrees of freedom be embedded into a compelling UV theory? By bringing together experts on particle physics and cosmology, we hope to develop a deeper understanding of these tough questions over the course of this 4-week MIAPbP meeting.			
Contact at MIAPbP				

MIAPbP Workshop

Munich June 24 – July 19, 2024

register now: deadline is this Sunday, Oct 22!

Summary

Question: if dark matter only interacts gravitationally, how was it produced? Quantum fluctuations during or at the end of inflation (i.e., CGPP) can do it!

Things I talked about:

- Constraining CGPP dark matter with CMB isocurvature (spin-0, minimally-coupled to gravity)
- A theory of massive spin-2 particles on an FRW background (connections to bigravity)
- CGPP interpretation as inflaton annihilations during reheating
- Effect of quantum interference leading to "fringes" in the energy spectrum
- Predicted relic abundance of massive spin-2 particles
- FRW-generalization of the Higuchi bound

Things I'd like to talk about:

- Other theories of massive spin-2 (Kaluza Klein, string Regge trajectories)
- Observational signatures of CGPP (isocurvature, non-Gaussianity, lab tests)
- Implications for other relics (baryogenesis, dark radiation)

backup slides

massless scalar spectator spectrum

Massless scalar spectator

 $\ln(a/a_0)$

Gravitational production of massive spin-2 48

Andrew Long (Rice University)

 $k \ [a_0 {\rm Mpc}^{-1}]$

 10^{20}

 10^{25}

 10^{20}

 10^{30}

 10^{25}

spin-1 particles
& ultra-light vectors

A massive Proca field in FRW

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} - \frac{1}{2} m^2 g^{\mu\nu} A_\mu A_\nu \right]$$

transverse polarization modes

$$\left(\partial_{\eta}^{2} + \omega_{T}^{2}\right)\chi_{T,k} = 0$$
$$\omega_{T}^{2} = k^{2} + a^{2}m^{2}$$

identical to a conformallycoupled scalar

longitudinal polarization modes

$$\left(\partial_{\eta}^{2} + \omega_{L}^{2}\right)\chi_{L,k} = 0$$

$$\omega_{L}^{2} = k^{2} + a^{2}m^{2} + \frac{1}{6}\frac{k^{2}a^{2}R}{k^{2} + a^{2}m^{2}} + 3\frac{k^{2}a^{4}H^{2}m^{2}}{(k^{2} + a^{2}m^{2})^{2}}$$

extra terms from integrating out time-like component

Differentiating vectors & scalars

[Graham, Mardon, & Rajendran (2015)]

Differentiating vectors & scalars

[Graham, Mardon, & Rajendran (2015)]

Gravitational production of massive spin-2	52	Andrew Long (Rice University)
--	----	-------------------------------

Relic abundance

[Kolb & Long (2020)], see also: [Ahmed, Grzadkowski, & Socha (2020)]

spin-2 CGPP extra plots

Numerical results – spectra

Gravitational production of massive spin-2

55

Andrew Long (Rice University)

Scalar sector - spectra

We also calculate spectra for the inflaton-like scalar perturbations. This is just the usual quasi-scale invariant spectrum of curvature perturbations.

Gravitational production of massive spin-2

nightmare scenario

intuition for CGPP

An analogy with 1D quantum mechanics

