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Outline

• What we have learned so far 
• Perspectives at the LHC 
• Beyond LHC: Higgs Factory and the Cool Copper Collider
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The Standard Model and the Higgs boson
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The Higgs Boson
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Higgs Boson Production at the LHC
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ZZ → 4ℓ
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Higgs mass
ATLAS-CONF-2020-026

CMS-Eur. Phys. J. C 81 (2021) 488

Higgs Boson mass measured with relative uncertainty < 0.2%
Lepton momentum scale uncertainty is 0.05-0.3%

The total calibration uncertainty for photons is 0.2%–0.3%
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-026/
http://dx.doi.org/10.1140/epjc/s10052-021-09200-x
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The performance and the level of understanding of ATLAS and 
CMS detectors are impressive

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2020-026/
http://dx.doi.org/10.1140/epjc/s10052-021-09200-x
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Is it a SM Higgs boson?

• Mass 

• Spin-parity (0+)

• Width

• The couplings to fermions and bosons 

• Study the self-coupling

• Any non-SM property?

10

Couplings to W and Z established in Run 1
In Run 2 first direct confirmation of coupling to all 3rd generation fermions  

(top/bottom-quarks and τ leptons)
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All 4 main production modes observed 

Higgs in 2022
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CMS-Nature 607, 60–68 (2022)
ATLAS-Nature 607, 52–59 (2022)

https://www.nature.com/
https://www.nature.com/
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BR(inv.) < 0.17 (0.11)
CMS-PAS-HIG-20-003

CMS-PAS-HIG-21-008

 
|κc|<3.4

CMS-Nature 607, 60–68 (2022)
ATLAS-Nature 607, 52–59 (2022)

https://www.nature.com/
https://www.nature.com/
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Testing the shape
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Higgs boson self-coupling
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HH production allows to probe the self-coupling:    if 
Extremely challenging measurement at the LHC, but it can be sensitive to large deviations from BSM:  

Δσ/σ ∼ Δλ/λ λ ∼ λSM
κλ = λ/λSM

~31fb@13TeV

arXiv:1910.00012
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Similar sensitivity from several channels to SM HH production 

Double Higgs Results

17

ArXiv:2209.07510

Best channels are bbγ̄γ, bbτ̄τ, bbb̄b ̄

https://arxiv.org/abs/2209.07510
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ArXiv:2209.07510

https://arxiv.org/abs/2209.07510
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No new particles discovered at the LHC so far…
ArXiv:2209.07510

https://arxiv.org/abs/2209.07510
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What’s next?
How can we use the Higgs to find new physics?

No new particles discovered at the LHC so far…

Arxiv:1506.05992

ArXiv:2209.07510

https://arxiv.org/abs/1506.05992v2
https://arxiv.org/abs/2209.07510
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LHC → High Luminosity LHC

19

2020 2021 2022 2023 2024 2025 2026 2027 2028

Upgrade of accelerator 
and experiments 

HL-LHC installation

ATLAS Upgrade

LHC HL-LHC

2019

Run 2 Run 3 Run 4/5

170M H 
120k  HH

2039…

8M H 16M H 

Today

Phase-2 HL-LHC detector 
upgrades are being built 
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Higgs physics at the HL-LHC

• HL-LHC will dramatically expand the physics 
reach for Higgs physics: 

• 2-5% precision for many of the Higgs 
couplings

• BUT much larger uncertainties on Z𝜸 and charm 
and ~50% on the self-coupling
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1902.10229

https://cds.cern.ch/record/2651134/files/1902.10229.pdf
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What’s next?

21

Physics goals beyond HL-LHC:
 
1. Establish Yukawa couplings to light flavor ⟹ precision & lumi
2. Search for invisible/exotic decays and new Higgs ⟹ precision & lumi
3. Establish self-coupling ⟹ high energy 

LHC

2030 2040 2060

HL-LHC
e+e-

very high energy

O(10)%  O(0.1-1)% O(1)‰H couplings to: 
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Why e+e-?
● Initial state well defined & polarization    ⟹ High-precision measurements 
● Higgs bosons appear in 1 in 100 events ⟹ Clean experimental environment and trigger-

22

pp/LHC e+e-

less readout 
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Higgs at e+e- 

• ZH is dominant at 250 GeV

• Above 500 GeV 

• Hvv dominates 

• ttH opens up

• HH accessible with ZHH

23
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Higgs couplings at future e+e-

● Coupling to W and Z would be 
measured with an accuracy of few 0.1%

● Coupling to charm and b quarks 
could be measured with an accuracy of 
~1% at future e+e- machines

● Couplings to µ/𝜸/Z𝜸 benefit the most 
from the large dataset available at HL-
LHC

24

240+365

ArXiv:2209.07510

https://arxiv.org/abs/2209.07510
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Complementarity between HL-LHC and future colliders (depending on their timeline) 
will be the key to explore the Higgs sector

240+365

ArXiv:2209.07510

https://arxiv.org/abs/2209.07510
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Precision challenges detectors

Physics requirements for detectors

ZH process: Higgs recoil reconstructed from Z →µµ
○ Drives requirement on charged track momentum and jet 

resolutions 
○ Sets need for high field magnets and high precision / low 

mass trackers 
○ Bunch time structure allows high precision trackers with very 

low X0 at linear lepton colliders
Particle Flow reconstruction 
Higgs → bb/cc decays: Flavor tagging & quark charge 
tagging at unprecedented level 
○ Drives requirement on charged track impact parameter 

resolution → low mass trackers near IP
○ <0.3% X0 per layer (ideally 0.1% X0) for vertex detector 
○ Sensors will have to be less than 75 µm thick with at least 5 

µm hit resolution (17-25µm pitch)

25

arXiv:2003.01116

https://arxiv.org/abs/2003.01116
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arXiv:2003.01116

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

https://arxiv.org/abs/2003.01116
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The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

Higgs physics as a driver for future detectors R&D

● Advancing HEP detectors to new regimes of sensitivity
● Building next-generation HEP detectors with novel materials & advanced techniques

26

DOE Basic Research Needs Study on InstrumentationArxiv:2209.14111 Arxiv:2211.11084

https://science.osti.gov/-/media/hep/hepap/pdf/202007/11-Fleming_Shipsey-Basic_Research_Needs_Study_on_HEP_Detector_Research_and_Development.pdf?la=en&hash=1D6CE7C7AEFCE124E6AA3A6914332B3F4D78A525
https://arxiv.org/pdf/2209.14111.pdf
https://arxiv.org/pdf/2211.11084.pdf
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Several technologies are being studied to meet the physics performance 

Sensors technology requirements for Vertex Detector

Sensor’s contribution to the total material budget of vertex detector is 15-30%
Sensors will have to be less than 75 µm thick with at least 3-5 µm hit resolution (17-25 µm 
pitch) and low power consumption:

• continuous r/o during the train with power cycling 
• delayed after the train →  either ~5μm pitch for occupancy or in-pixel time-stamping

27



Monolithic Active Pixel Sensors (MAPS) for high precision tracker and high granularity calorimetry

MAPS 

● Monolithic technologies have the potential for providing higher granularity, 
thinner, intelligent detectors at lower overall cost. 

● Significantly lower material budget: sensors and readout electronics are 
integrated on the same chip 
○ Eliminate the need for bump bonding : thinned to less than 100µm
○ Smaller pixel size, not limited by bump bonding 
○ Lower costs : implemented in standard commercial CMOS processes 

28

Initial specifications for fast MAPS aka NAPA
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Linear vs. Circular

• Linear e+e- colliders
• Reach higher energies (~ TeV)
• Can use polarized beams
• Relatively low radiation
• Collisions in bunch trains

• Power pulsing →  Significant power saving for 
detectors

• Circular e+e- colliders
• Highest luminosity collider at Z/WW/Zh

• limited by synchrotron radiation above 350– 400 GeV 
• Beam continues to circulate after collision

• No power pulsing, detectors need active cooling → 
more material

• Limits magnetic field in detectors to 2T

29
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Various proposals … 

30

250/500 GeV

CLIC 380/1500/3000 GeV

FCC-ee
240/365 GeV

CEPC 240 GeV

250/550 GeV
 … > TeV
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Why 550 GeV?

• We propose 250 GeV with a relatively 
inexpensive upgrade to 550 GeV on 
the same 8 km footprint.  

• 550 GeV will offer an orthogonal 
dataset to cross-check a deviation 
from the SM predictions observed 
at 250 GeV

• O(20%) precision on the Higgs self-
coupling would allow to exclude/
demonstrate at 5𝜎 models of 
electroweak baryogenesis 

31

arXiv:1908.11299
arXiv:1506.07830

https://arxiv.org/pdf/1506.07830.pdf
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https://physics.aps.org/articles/v15/155
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C3 is a new linac normal conducting technology based on:

First C3 
structure 
at SLAC

     why copper?

• An ab-initio study of on axis accelerating fields and 
cavity breakdown rates – successful, but with 
relatively small iris.
• RF fundamental does not propagate through irises.

• A related discovery of an integrated RF manifold 
delivering proper phase and 1/Ncavities power to each 
cavity solves the small iris issue.
• modern super-computing for solution.
• Seemingly complex structure can easily and 

inexpensively be built with modern CNC 
Machines

33

arXiv:2110.15800

https://arxiv.org/abs/2110.15800
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Why cool?

• Shunt impedance in normal conducting Cu further improved by running at ~80K LN2

• Cryogenic temperature elevates performance in gradient
• Material strength is key factor
• Operation at 77 K with liquid nitrogen is simple and practical
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     expected gradient
• Robust operations at high gradient: 120 MeV/m

• Start at 70 MeV/m for C3-250
• Scalable to multi-TeV operations

35

High Gradient Operation at 150 MV/m 

Cryogenic Operation at X-band

arXiv:2110.15800

https://arxiv.org/abs/2110.15800
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C3 parameters

36

arXiv:2110.15800

https://arxiv.org/abs/2110.15800
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1 ms long bunch trains at 5 Hz
308ns spacing

Beam Format and Detector Design Requirements 

37

ILC timing structure

Temperature (K) 77

Beam Loading (%) 45

Gradient (MeV/m) 70

Flat Top Pulse Length (µs) 0.7

Cryogenic Load @ 77K (MW) 9

Electrical Load (MW) 100

Pulse Format

Parameter (250 
GeV CoM)

Units Value

Reliquification 
Plant Cost

M$/MW 18

Single Beam 
Power (1 TeV 

linac)

MW 2

Total Beam Power MW 4

Total RF Power MW 18

Heat Load at 
Cryogenic 

Temperature

MW 9

Electrical Power 
for RF

MW 40

Electrical Power 
for Cryo-Cooler

MW 60
133 1 nC bunches spaced by 
30 RF periods (5.25 ns)

RF envelope 
700 ns

C3 timing structure

ILC/C3 timing structure: Fraction of a percent duty cycle
● Power pulsing possible, significantly reduce heat load
○ Factor of 50-100 power saving for FE analog power

● Tracking detectors don’t need active cooling
○ Significantly reduction for the material budget

C3  time structure is compatible with ILC-like detector overall design and ongoing optimizations.
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Up to 1 GeV of acceleration per 9 m cryomodule; ~90% fill factor with eight 1 m structures

      Cryomodule Design

On going development: design of cryomodule for first prototype with two structures.

38

arXiv:2110.15800

Cryomodule unit - 9 m 
630 MeV at 70 MeV/m
  1 GeV at 120 MeV/m

https://arxiv.org/abs/2110.15800
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8 km footprint for 250/550 GeV ⟹ 70/120 MeV/m

     layout

7 km footprint at 155 MeV/m for 550 GeV CoM – present Fermilab site
Large portions of accelerator complex are compatible between LC technologies 
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arXiv:2110.15800
arXiv:2203.07646

Fermilab Site FillerHanford Site

https://arxiv.org/abs/2110.15800
https://arxiv.org/abs/2203.07646
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Tunnel Layout for Main Linac 250/550 GeV CoM 
• Need to optimize tunnel layout – first study looked at 9.5 m inner diameter in order to match ILC costing model

• Must minimize diameter to reduce cost and construction time
• Evaluating both underground and surface sites

• Underground – less constraints on energy upgrade
• Surface – lower cost and faster to first physics

• National Lab and Green Field are Possibilities

40
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Next: C3 Demonstration Facility

41

Demonstrate fully engineered cryomodule and then three cryomodules operations:
~50 m scale facility
3 GeV energy reach

Stage 1 will answer the most pressing technical questions - beam loading, damping, alignment 
required to complete the engineering to a level appropriate for a CDR  - by 2025
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Technically limited timeline of the C3 proposal

What’s next?

42
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The Snowmass Energy Frontier discussions have unequivocally highlighted the following theme:

A strong US-based initiative mitigates Global Uncertainty

43

ArXiv:2211.11084

ArXiv:2208.06030

• C3 has been evaluated independently from the Implementation 
Task Force along with the other proposals

• Strong engagement and support from Energy Frontier

https://arxiv.org/pdf/2211.11084.pdf
https://arxiv.org/abs/2208.06030
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• The Higgs boson is our most recent advance in 
the understanding of the fundamental particles 
• a new state of matter-energy
• a potential window to Beyond the Standard 

Model through precision measurements
• a possible relation between Higgs and dark 

matter, baryogenesis and inflation
• Collider physics is essential to explore the 

property of the Higgs Boson and EWSB
• Higgs plays a central element for the future 

colliders
• C3 can provide a rapid route to precision 

Higgs physics with a compact footprint
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Power Consumption and Sustainability

47Snowmass

250 GeV CoM - Luminosity - 1.3x1034


Parameter Units Value
Reliquification Plant Cost M$/MW 18
Single Beam Power (125 

GeV linac)
MW 2

Total Beam Power MW 4
Total RF Power MW 18

Heat Load at Cryogenic 
Temperature

MW 9

Electrical Power for RF MW 40
Electrical Power For 

Cryo-Cooler
MW 60

Accelerator Complex 
Power

MW ~50

Site Power MW ~150

Temperature (K) 77
Beam Loading (%) 45
Gradient (MeV/m) 70

Flat Top Pulse Length 
(𝜇s) 

0.7

Cryogenic Load (MW) 9
Main Linac Electrical 

Load (MW)
100

Site Power (MW) ~150

Highview Power

Compatibility with Renewables

Cryogenic Fluid Energy Storage

Intermittent and variable 
power  production from 
renewables mediated with 
commercial scale energy 
storage and power 
production
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Monolithic Active Pixel Sensors (MAPS) for high precision tracker and high granularity calorimetry

MAPS Detector R&D

● Monolithic technologies have the potential for providing 
higher granularity, thinner, intelligent detectors at lower 
overall cost. 

● Significantly lower material budget: sensors and readout 
electronics are integrated on the same chip 
○ Eliminate the need for bump bonding : thinned to less 

than 100µm
○ Smaller pixel size, not limited by bump bonding 
○ Lower costs : implemented in standard commercial 

CMOS processes 
○ SLAC is part of the existing CERN WP 1.2 collaboration
○ R&D efforts towards a wafer-scale MAPS on TowerJazz 

65 nm

48



Lower material budget than ATLAS ID, from 1.6 → 0.6 X0 at η ~1

Material Budget

49Caterina Vernieri - Michigan State University - March 26, 2023

• Evaporative CO2 cooling system with titanium 
pipes 

• Carbon structures for local supports. 
• Optimized number of readout cables using link 

sharing
• Innovative Serial Powering scheme in the pixels.

ATL-PHYS-PUB-2021-024

Run 2 tracker
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The Snowmass Energy Frontier discussions have unequivocally highlighted the following theme:

A strong US-based initiative mitigates Global Uncertainty

50

•  The US community advocates for an active role in planning for future colliders 
•  Investigate the possibility of an Higgs factory and the R&D for a future muon collider in the US 
•  Given global uncertainties, consideration should be given to the timely realization of a domestic Higgs 

factory, in case none of the currently proposed options will be realized.
• Future colliders will set unique challenges in detector design to achieve our ambitious physics goals
 The investment in detector and collider R&D for lepton facilities in the US should start now 

•  A parallel effort with the LHC to enable a future e+e− precision electroweak program and a high-energy 
machine

•  Such a domestic R&D program would grow the US accelerator & detector workforce and strengthen 
the international community, regardless of where the next big project will be realized

 The opportunity to work on fundamental problems and technological challenges is a key element to 
motivate students and early career scientists 
•  A US-based future collider R&D program will give the impetus to make particle physics program attractive to 

the young and future generations of scientists in the US.
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The Higgs self-coupling at future colliders 
arXiv:1910.00012

arXiv:2004.03505

51

O(20%) precision on the Higgs  
self-coupling would allow to exclude/demonstrate at 5𝜎 models of 

electroweak baryogenesis 


https://arxiv.org/pdf/2004.03505.pdf
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Higgs couplings at future machines

• The Zγ interaction remains difficult to measure at all future machines 

• Higher energy collision is required (factor 2 from 500 to 550 GeV e+e-) to further constraints the Higgs-

top coupling

• These results are based on the κ0 scenario of the ESG (combined with projections for HL-LHC results) and 

do not allow for BSM decays

52
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One note on polarization

• There are extensive comparisons between the FCC-ee 
plan and the C3/ILC runs that show they are rather 
compatible to study the Higgs Boson


• When analyzing Higgs couplings with SMEFT, 2 ab-1 of 
polarized running is essentially equivalent to 5 ab-1 of 
unpolarized running.

• Electron polarization is essential for this.  But, there 

is almost no difference in the expectation with and 
without positron polarization.


• Positron polarization allows more cross-checks of 
systematic errors.  We may wish to add it later.


• Positron polarization brings a large advantage in 
multi-TeV running, where the most important cross 
sections are from  e-Le+R

53

arXiv:1708.08912

arXiv:1801.02840
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Higgs couplings: precision & kinematic arXiv:1310.8361

Assuming new physics at some scale 
M ≫ v

54

ℒ = ℒSM +
1

M2 ∑
k

𝒪k

The EFT formalism summarizes deviations that might appear in a very wide class of models beyond the SM


https://arxiv.org/abs/1310.8361
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Higgs couplings: precision & kinematic 

Sub-percent level measurements can test TeV-scale new physics effect


• If E~mH  and M~1 TeV, the effects of dim-6 (8) operators are of the order of few % (10-4)

arXiv:1310.8361

Assuming new physics at some scale 
M ≫ v

54

ℒ = ℒSM +
1

M2 ∑
k

𝒪k

The EFT formalism summarizes deviations that might appear in a very wide class of models beyond the SM


δO ∼ ( v
M )

2

∼ 6 % ( TeV
M )

2

https://arxiv.org/abs/1310.8361
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Higgs couplings: precision & kinematic 

Sub-percent level measurements can test TeV-scale new physics effect


• If E~mH  and M~1 TeV, the effects of dim-6 (8) operators are of the order of few % (10-4)

arXiv:1310.8361

Assuming new physics at some scale 
M ≫ v

Measurements at large transferred momentum (Q) probe large M even if precision is low 

15% effect on δOQ for M ~ 2.5 TeV
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ℒ = ℒSM +
1

M2 ∑
k

𝒪k

The EFT formalism summarizes deviations that might appear in a very wide class of models beyond the SM


δO ∼ ( v
M )

2

∼ 6 % ( TeV
M )

2

δOQ ∼ ( Q
M )

2

https://arxiv.org/abs/1310.8361
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Prospects for light quark couplings at HL-LHC

• Exclusive decays to γ+meson include contributions 
from light quark Yukawa couplings 


• Interpretation of Higgs width constraint: direct 
measurement and via off-shell


• Interpretation of kinematic distributions 

• Direct search for H→cc 

• Global fit of all Higgs couplings (assuming no other 

BSM decays)

55

CERN-LPCC-2018-04
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HH prospects

56

lumi scaling only
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HH prospects

56

September 2018 - Science Magazine

lumi scaling only

https://www.sciencemag.org/news/2018/09/physicists-search-rare-higgs-boson-pairs-could-yield-new-physics
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HH prospects

56

With Full Run 2 data  - significant analyses improvements on top of additional data

Combination of the best channels could get us close to test the SM hypothesis at the end of Run 3

September 2018 - Science Magazine

lumi scaling only

https://www.sciencemag.org/news/2018/09/physicists-search-rare-higgs-boson-pairs-could-yield-new-physics
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Physics requirements for e+e-

• The ZH process, with the recoiling Higgs reconstructed from the Z →ll drives the requirement on charged 
track momentum resolution 

• High field magnets and high precision/low mass trackers 


• Flavour tagging & quark charge tagging will be available at an unprecedented level 

• new generation of vertex detectors with dedicated sensor designs to address the modest, but 

challenging, ILC backgrounds. 

• soft beamstrahlung pairs create high occupancies that demand fast readouts, requiring extra power. 
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arXiv:2003.01116

https://arxiv.org/abs/2003.01116
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Linear & Circular Collider - Detector Impact

• Linear colliders : ILC, CLIC

○ Only possible way towards high-energy with leptons

○ Polarized collisions possible

○ The time structure and low radiation background provides an 

environment which allows us to consider very light, low power 
detector structures


• Circular colliders : FCC, CEPC 

○ Highest luminosity  at Z pole/WW/ZH, but strongly limited by 

synchrotron radiation above 350– 400 GeV

○ The interaction rates (up to 100 kHz at the Z pole) put strict constraints 

on the event size and readout speed

○ Due to beam crossing angle, solenoid magnetic field is limited to 2 T 

to avoid a significant impact on the luminosity

○ Trackers must achieve good resolution without power pulsing


• Linear colliders allow lower mass Si pixel and strip trackers

59
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Self-coupling at e+e-

60

The self-coupling could be determined also through 
single Higgs processes 


• Relative enhancement of the e+e− → ZH cross-
section and the H→W+W− partial width 


• Need multiple Q2 to identify the effects due to 
the self-coupling 

arXiv:1312.3322
arXiv:1910.00012

https://arxiv.org/pdf/1312.3322.pdf
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Higgs at e+e- 

• Circular lepton colliders - FCC-ee - provide the 
highest luminosities at lower centre-of-mass 
energies 

• Unique opportunity to measure the Higgs 

boson coupling to electrons through the 
resonant production process e+e- → H at √ s 
= 125 GeV


• FCC-ee running at H pole-mass with 20/ab 
would produce O(30.000) H's reaching SM 
sensitivity

• Requires control of beam-energy spread 
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1912.11871

https://arxiv.org/pdf/1912.11871.pdf
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One example: H(bb̄)

62
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ATLAS-Phys. Lett. B 786 (2018) 59 

~4M                                                                  ~400  
 4.8σ  (VH only)                                                5.2σ

pp LHC e+e- ILC

Ogawa, thesis

# of Higgs produced:

https://inspirehep.net/literature/1796253
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HH at future e+e- colliders 

63

• The self-coupling  can be probed at e+e- through HH with ZHH ~500GeV and  ννHH ≥1TeV

• HHνν requires  , the use of polarized beams could increase the cross-section by a factor ~2e−

L e+
R

 Review in Physics (2020) 100045
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https://arxiv.org/abs/1910.00012
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Beam Generation and Delivery Systems for C3 

• No positron polarization.

• No upstream polarization measurement, but 

downstream polarization and energy 
measurement for both beams.


• Large portions of accelerator complex are 
compatible between LC technologies 

• Beam delivery and IP modified from ILC

• Damping rings modified from CLIC

• Injectors to be optimized with CLIC as baseline

• There is a possibility of a high brightness, 

polarized

• RF gun which might eliminate the e- 

damping ring, but that is not in the cost 
models.


•
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C3 - Investigation of Beam Delivery

Adapted from ILC/NLC
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Next: C3 Demonstration Facility
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CDR

TDR
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Latest tests 

66

Structure in test stand at 
radiabeam
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Luminosity optimization  

67

arXiv:1412.2928

 Using established collider designs to inform 
initial parameters
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Luminosity optimization  

67

Machine CLIC NLC C3

Freq (GHz) 12.0 11.4 5.7
a (mm) 2.75 3.9 2.6
Charge (nC) 0.6 1.4 1
Spacing 6 16 19
# of bunches 312 90 75

https://clic-meeting.web.cern.ch/clic-
meeting/clictable2010.html
NLC, ZDR Tbl. 1.3,8.3

Beam Power

Luminosity

https://arxiv.org/abs/1711.00568
https://arxiv.org/abs/1608.07537

 Using established collider designs to inform 
initial parameters
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Development of C3 Accelerating Structure
• Two Key Technical Advances: Distributed Coupling and Cryo-Copper RF

• Envision meter-scale accelerating structures, technology demonstration underway

• Implement most high-gradient advances

68
Z. Li, S. Tantawi

One meter (40-cell) C-band design 
with reduce peak E and H-field

Scaling fabrication techniques in 
length and including controlled gap

Tuned, confirmed 77K 
performance, first 300k high 

power test in progress
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Performance of Single-Cavity Structure Prototypes 

• First high gradient test at C-band

• Side coupled, split-cell reduced peak field, reduced phase adv.

• Exceed ultimate C3 field strengths

• High power in up to 1 microsecond - break down rate statistics collected and being prepared 

for release
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LANL Test of single cell SLAC 
C-band structure 

Slot Damping Prototype 

Working on NiCr Coating

Structure Exceeds 120 MeV/m for 
500 ns @ Room Temp

BDR Data Collected 

Very promising for polarized cryo-gun (Rosenzweig, 
et al. NIM 909 (2018): 224-228) 


