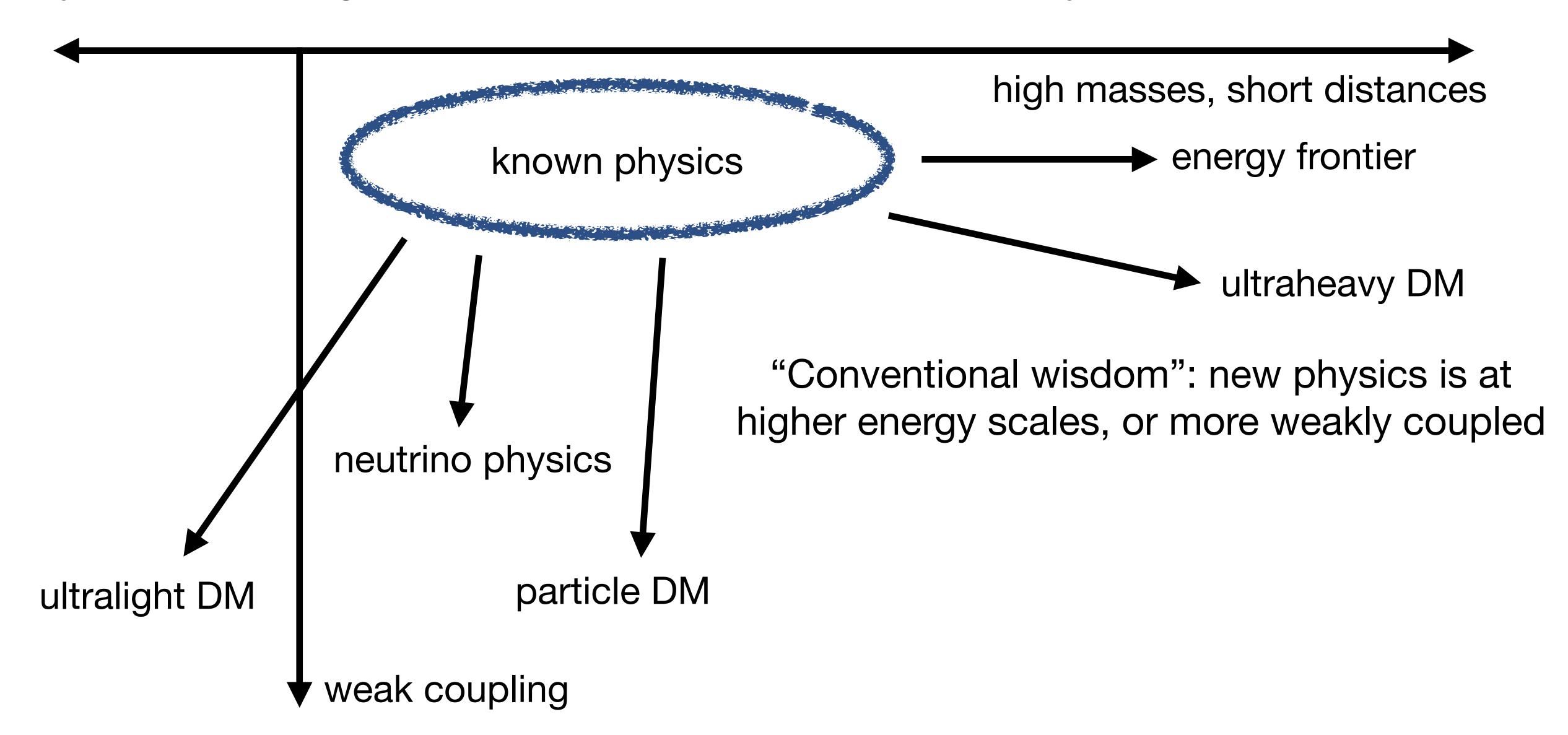
Electromagnetism and Gravity with Continuous Spin

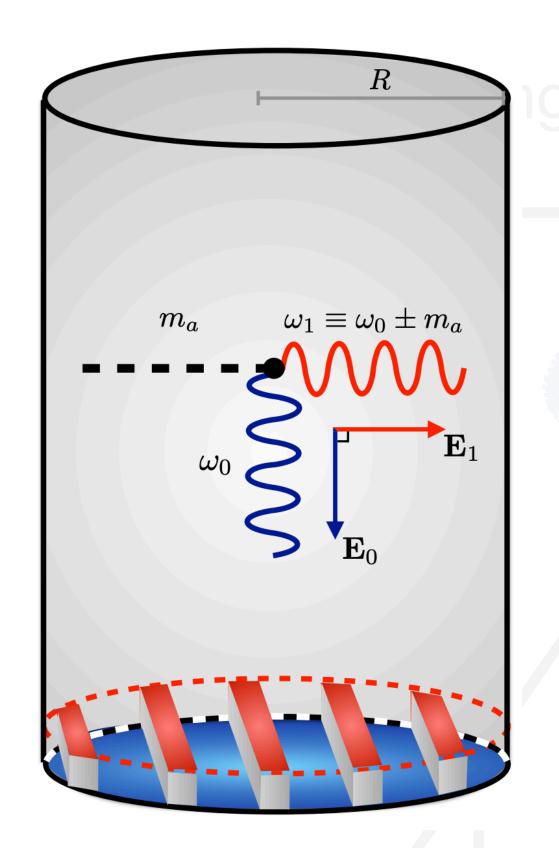
Kevin Zhou

CERN BSM Forum — June 29, 2023

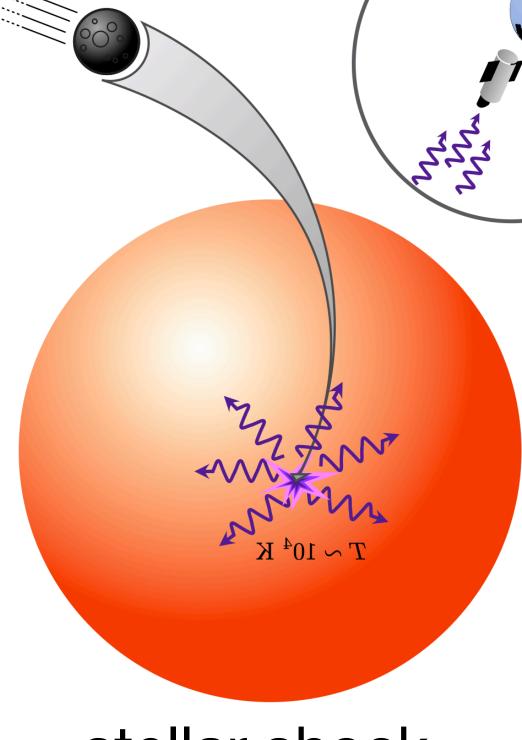
arXiv:2303.04816 (JHEP), with Philip Schuster and Natalia Toro

My focus is finding new experimental methods to probe beyond the Standard Model.





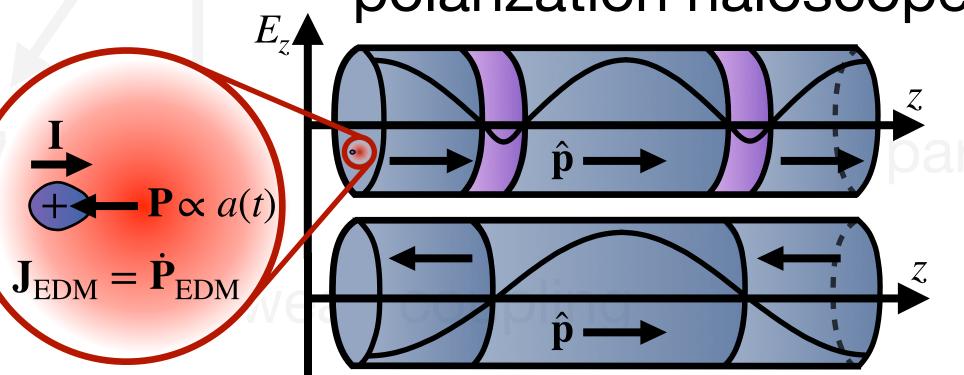
(accordingly, much of my work has been proposing new ways to search for dark matter, at a variety of mass scales)



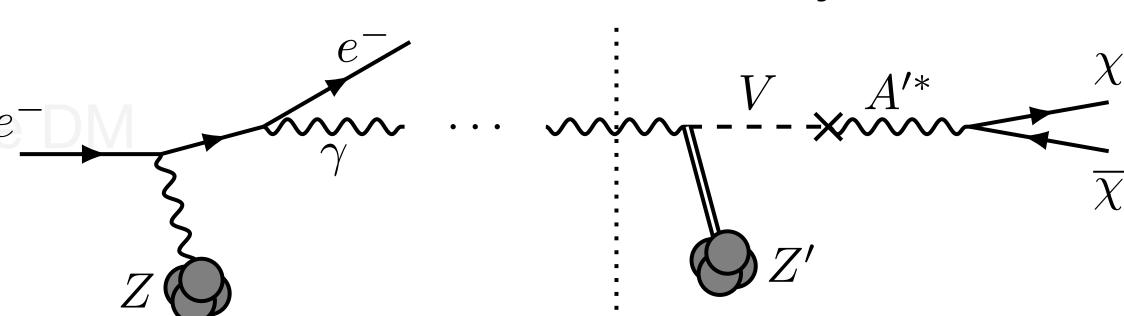
stellar shock transients

axion upconversion

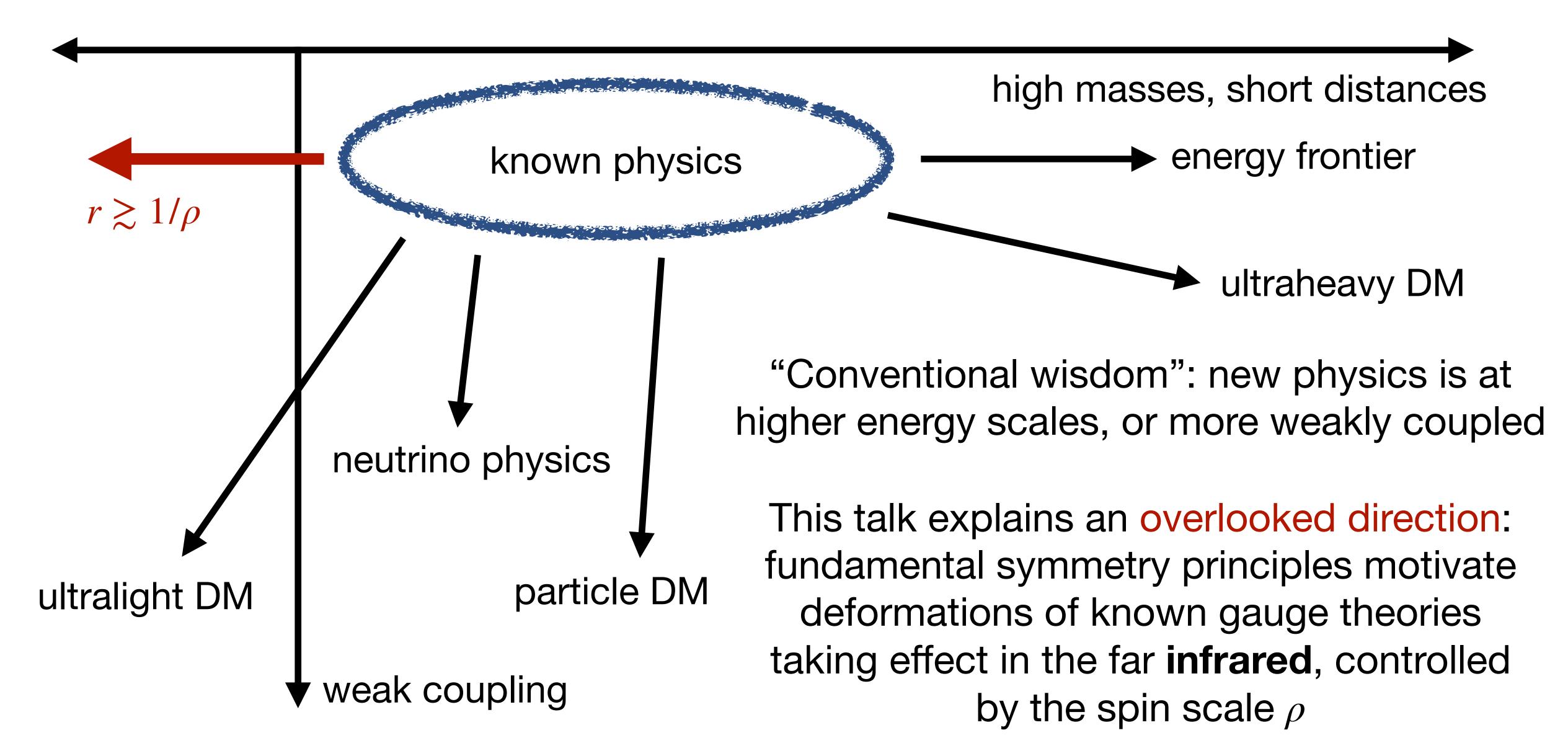
polarization haloscopes



invisible meson decays



My focus is finding new experimental methods to probe beyond the Standard Model.



Classifying Particles by Mass and Spin Scale

States transform under translations P^{μ} and rotations/boosts $J^{\mu
u}$

Particle states with definite momentum obey $P^{\mu} | k, \sigma \rangle = k^{\mu} | k, \sigma \rangle$

Little group transformations $W^\mu=\frac{1}{2}\epsilon^{\mu\nu\rho\sigma}J_{\nu\rho}k_\sigma$ affect only internal state σ

Different types of particles classified by $P^2=m^2$ and $W^2=-\rho^2$

What is the physical meaning of the spin scale ρ ?

Classifying Particles by Mass and Spin Scale

For $m^2 > 0$, representations are spin S massive particles

States are $|k,h\rangle$ for helicity h=-S,...,S, which is not Lorentz invariant

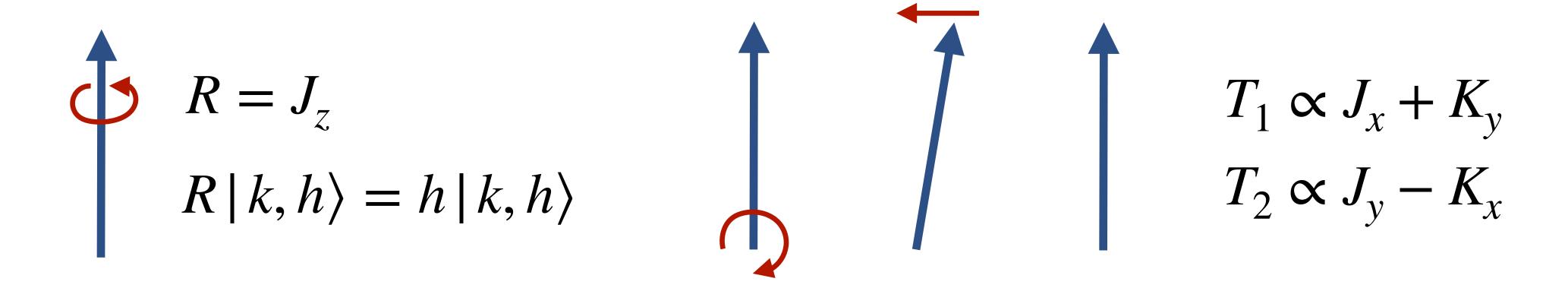
Boosts mix helicities by amount determined by $\rho = m\sqrt{S(S+1)}$

For $m^2 = 0$, states are still indexed by helicity $|k, h\rangle$

Spin scale again determines how helicity varies under boosts

The Massless Little Group

For a massless particle, $k^{\mu} = (\omega, 0, 0, \omega)$, little group generators are



Defining $T_{\pm} = T_1 \pm iT_2$, commutation relations imply

$$T_{\pm}|k,h\rangle = \rho|k,h\pm 1\rangle$$

Generic result is an infinite ladder of integer-spaced helicities!

Allowed Helicities for Massless Particles

Generic massless particle representation has continuous-valued spin scale ho

Since h is always integer or half-integer, gives two options, known since 1930s:

 $h=2 \qquad \cdots \qquad h=3/2$ $h=1 \qquad h=1/2 \qquad \text{fermionic}$ continuous spin $h=0 \qquad h=-1/2$ $h=-1 \qquad h=-3/2$ $h=-2 \qquad \cdots$

(plus supersymmetric, (A)dS, higher/lower dimension variants)

Allowed Helicities for Massless Particles

If we set $\rho = 0$, recover a single helicity h (related to -h by CPT symmetry)

Focus on bosonic case, which can mediate long-range $1/r^2$ forces

$$h = 0$$
 massless scalar (requires fine-tuning)

$$|h| = 1$$
 photon (minimal coupling to conserved charge)

$$|h|=2$$
 graviton (minimal coupling to stress-energy)

$$|h| = 3$$
 higher spin (no minimal couplings allowed)

Role of each |h| in nature well-understood from general arguments from 1960s

Kevin Zhou — Continuous Spin

Puled out by Weinberg soft theorems?

Theorems rely on Lorentz invariant h Generalize to good soft factors for $\rho \neq 0$

Schuster and Toro, JHEP (2013) 104/105

Can't interact with anything? Addressed in our paper!

Incompatible with field theory?

Simple free gauge theory found

Schuster and Toro, PRD (2015)

dust way too complicated? Addressed in our paper!

Infinite *h* leads to infinities in scattering/cosmology/astrophysics/Hawking/Casimir/...?

All but one |h| decouples in the $\rho \to 0$ limit!

h = 0 scalar-like (recovers Yukawa theory)

|h| = 1 vector-like (recovers electromagnetism)

|h| = 2 tensor-like (recovers linearized gravity)

For the field theorist: "because it's there"

Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood

For the experimentalist: "because it's testable" Theory predicts ρ -dependent deviations from electromagnetism and general relativity The value of ρ is unknown, and only experiment can determine it

For the field theorist: "because it's there"

Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood

For the experimentalist: "because it's testable"

Theory predicts ρ -dependent deviations from electromagnetism and general relativity. The value of ρ is unknown, and only experiment can determine it

Force in a radiation background:
$$\frac{\mathbf{F}}{q} = \mathbf{E} + \mathbf{v} \times \mathbf{B} - \left(\frac{\rho v_{\perp}}{2\omega}\right)^2 \left(\mathbf{E}_{\perp} + \frac{\mathbf{E}}{2}\right) + \dots$$

Significant correction when particles travel distance $\gtrsim 1/\rho$, total result always well-behaved

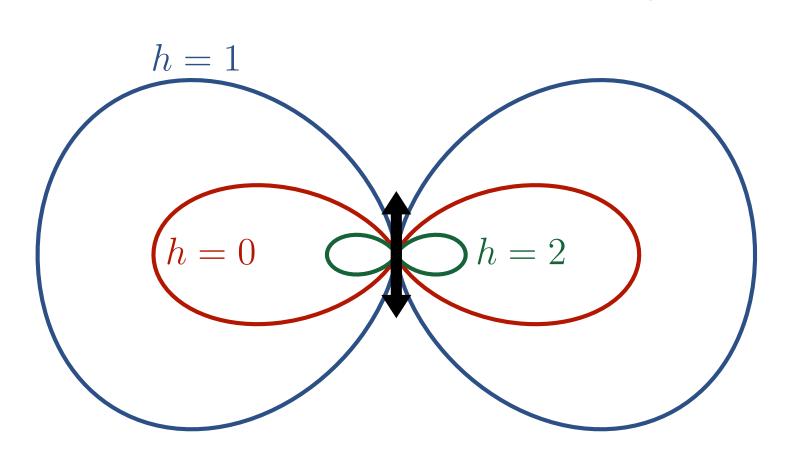
For the field theorist: "because it's there"

Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood

For the experimentalist: "because it's testable"

Theory predicts ρ -dependent deviations from electromagnetism and general relativity. The value of ρ is unknown, and only experiment can determine it

Radiation from an oscillating particle:



$$P = P_{\text{Larmor}} \times \begin{cases} (\rho \ell)^2 / 40 + \dots & h = 0\\ 1 - 3 (\rho \ell)^2 / 20 + \dots & h = \pm 1\\ (\rho \ell)^2 / 80 + \dots & h = \pm 2 \end{cases}$$

Significant correction when particles travel distance $\gtrsim 1/\rho$, total result always well-behaved

For the field theorist: "because it's there"

Simple and directly motivated by the postulates of relativity and quantum mechanics, but still not fully understood

For the experimentalist: "because it's testable" Theory predicts ρ -dependent deviations from electromagnetism and general relativity The value of ρ is unknown, and only experiment can determine it

For the model builder: "because it's novel"

A new infrared deformation of gauge theories, which may shed light on long-distance physics (dark matter, cosmic acceleration)

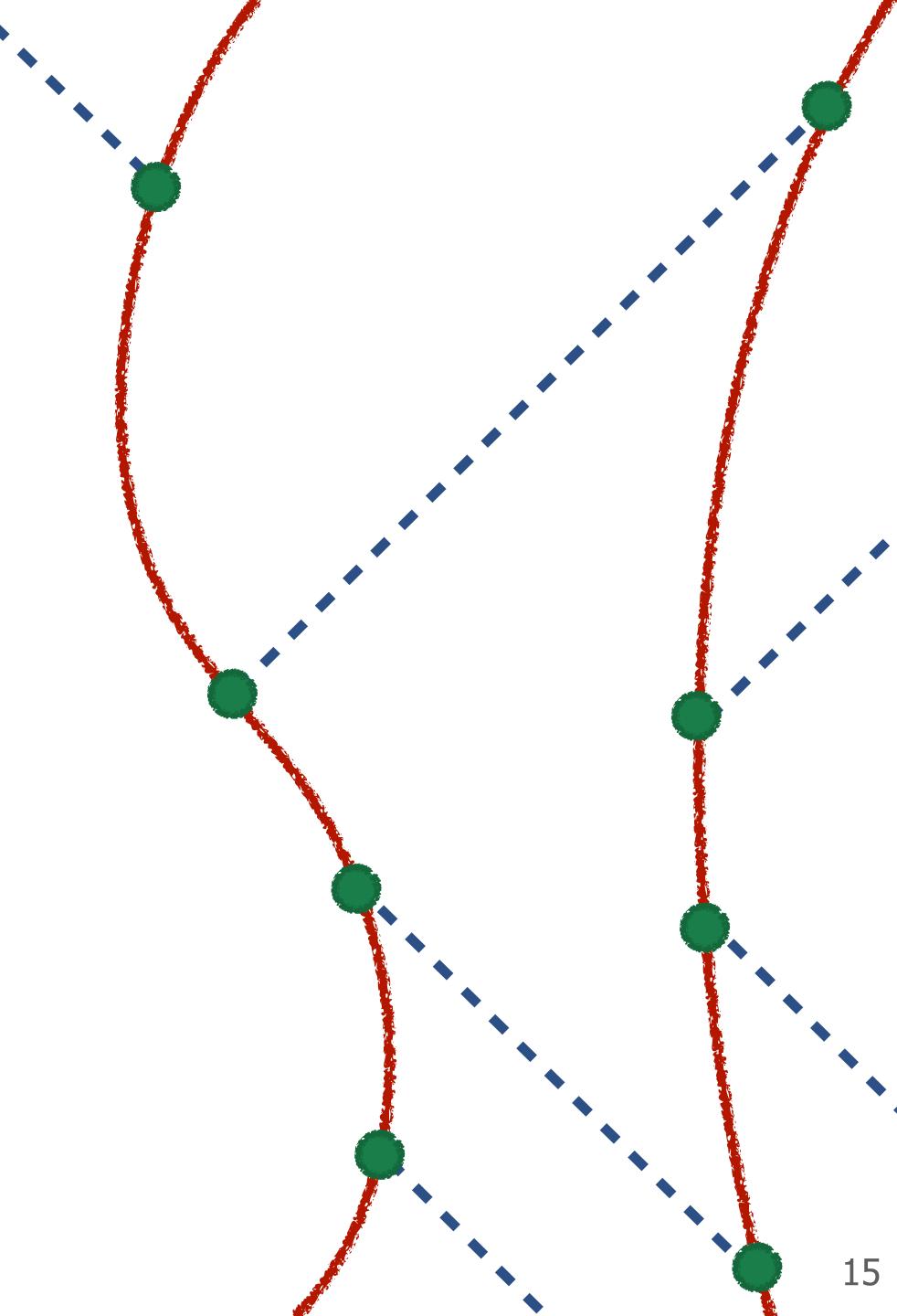
A new type of spacetime symmetry based on a bosonic superspace, possibly relevant for tuning problems (hierarchy, cosmological constant)

Outline

Free continuous spin fields

Coupling matter particles

Physics with continuous spin



Free Fields for Massless Particles

Tricky even for $\rho = 0$, by mismatch of field and particle degrees of freedom

scalar h = 0 scalar field ϕ , no extra components

photon $h = \pm 1$ vector field A_{μ} , 4 - 2 = 2 extra components

must use action with gauge symmetry $\delta A_{\mu} = \partial_{\mu} \alpha$

graviton $h=\pm 2$ sym. tensor field $h_{\mu\nu}$, 10-2=8 extra components

must use action with gauge symmetry $\delta h_{\mu\nu} = \partial_{(\mu} \xi_{\nu)}$

higher spin |h|>2 sym. tensor field $\phi_{\mu_1\dots\mu_h}$, many extra components

Given complexity of higher h, constructing a continuous spin field seems intractable!

Introducing Vector Superspace

A field in "vector superspace" (x^{μ}, η^{μ}) has tensor components of all ranks

$$\Psi(\eta, x) = \phi(x) + \sqrt{2} \, \eta^{\mu} A_{\mu}(x) + (2\eta^{\mu} \eta^{\nu} - g^{\mu\nu} (\eta^2 + 1)) \, h_{\mu\nu}(x) + \dots$$

Simple expression has free Lagrangian for each tensor field simultaneously!

$$\mathscr{L}[\Psi] = \frac{1}{2} \int_{\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2 \qquad \Delta = \partial_x \cdot \partial_{\eta}$$

Integration measure normalized by $\int \delta(\eta^2+1) \equiv 1$

$$\int_{\eta} \delta(\eta^2 + 1) \equiv 1$$

Symmetry and basic integration properties fix all other integrals, e.g.

$$\int_{\eta} \delta'(\eta^2 + 1) = 1, \int_{\eta} \delta'(\eta^2 + 1) \, \eta^{\mu} \eta^{\nu} = -\frac{1}{2} g^{\mu\nu}, \dots$$

Recovering Familiar Actions

$$\mathcal{L}[\phi] = \frac{1}{2} \int_{\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\partial_x \cdot \partial_\eta \Psi)^2 \Big|_{\Psi = \phi} = \frac{1}{2} (\partial_x \phi)^2$$
gives $1 \quad \partial_x \phi$

$$\partial_\eta \phi = 0$$

$$\mathcal{L}[A_{\mu}] = \frac{1}{2} \int_{\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\partial_x \cdot \partial_{\eta} \Psi)^2 \bigg|_{\Psi = \sqrt{2}\eta^{\mu}A_{\mu}} = -\frac{1}{2} (\partial_{\mu}A_{\nu})^2 + \frac{1}{2} (\partial_{\mu}A^{\mu})^2$$

$$(\sqrt{2} \eta_{\mu}\partial_x A^{\mu})^2 \qquad (\sqrt{2} \partial_{\mu}A^{\mu})^2$$

More generally, we recover the linearized Einstein-Hilbert action, and higher-rank Fronsdal actions, with no mixing

Kevin Zhou — Continuous Spin

Recovering Familiar Dynamics

One equation of motion for all helicities:

$$\delta'(\eta^2 + 1) \, \partial_x^2 \Psi - \frac{1}{2} \, \Delta \left(\delta(\eta^2 + 1) \, \Delta \Psi \right) = 0 \qquad \begin{cases} \partial^2 \phi = 0 \\ \partial^2 A^{\mu} - \partial^{\mu} (\partial \cdot A) = 0 \\ \cdots \end{cases}$$

One gauge transformation for all helicities:

$$\delta\Psi = (\eta \cdot \partial_x - \frac{1}{2}(\eta^2 + 1)\Delta) \alpha(\eta, x)$$

One mode expansion for all helicities:

$$\Psi_{k,h} = e^{-ik \cdot x} (\eta \cdot \epsilon_{\pm})^{|h|}$$

$$\begin{cases} \partial^2 \phi = 0 \\ \partial^2 A^{\mu} - \partial^{\mu} (\partial \cdot A) = 0 \\ \cdots \end{cases}$$

$$\begin{cases} \delta A^{\mu} = \partial^{\mu} \alpha \\ \delta h^{\mu\nu} = \partial^{(\mu} \alpha^{\nu)} \\ \cdots \end{cases}$$

$$\begin{cases} \phi_k = e^{-ik \cdot x} \\ A_k^{\mu} = e^{-ik \cdot x} \epsilon_{\pm}^{\mu} \\ \dots \end{cases}$$

Turning on the Spin Scale

All previous results can be generalized to arbitrary ρ by taking $\Delta = \partial_x \cdot \partial_\eta + \rho$

Still get one mode of each helicity, but now the action, equation of motion, gauge transformations, and plane waves all mix tensor ranks, e.g.

$$\mathcal{L} \supset \frac{\rho}{\sqrt{2}} \phi \, \partial_{\mu} A^{\mu}$$

$$\Psi_{k,h} = e^{-ik \cdot x} e^{-i\rho \eta \cdot q} (\eta \cdot \epsilon_{\pm})^{|h|} \qquad q \cdot k = 1$$

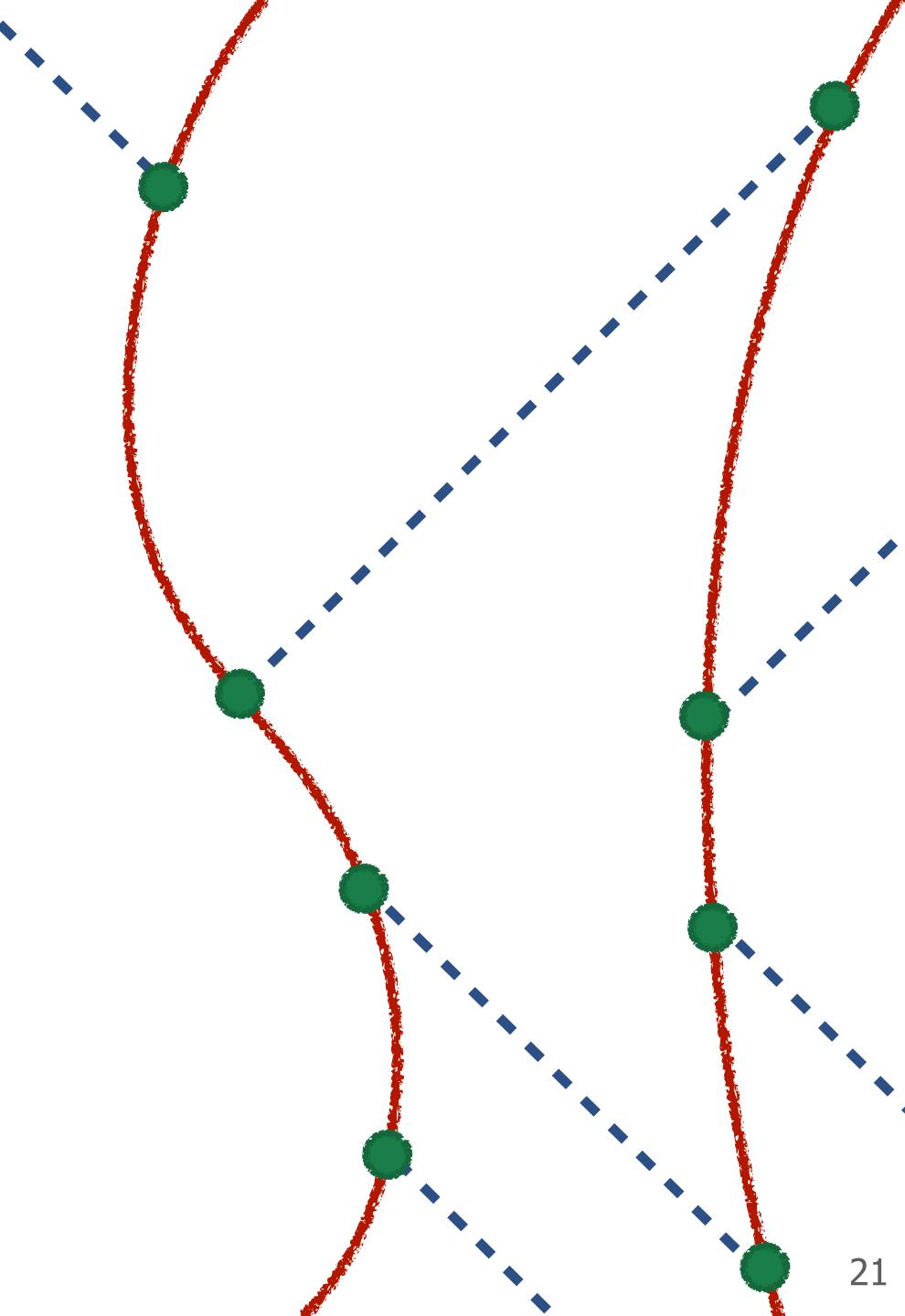
Because of mixing, tensor expansion is complicated and physically opaque, while vector superspace description remains simple

Outline

Free continuous spin fields

Coupling matter particles

Physics with continuous spin



Coupling Currents to Fields

Couple the continuous spin field to a current by

$$\mathcal{L}_{int} = \int_{\eta} \delta'(\eta^2 + 1) J(\eta, x) \Psi(\eta, x) = \phi J - A_{\mu} J^{\mu} + h_{\mu\nu} T^{\mu\nu} + \dots$$

Recover familiar results by tensor decomposition

$$J(\eta, x) = J(x) - \sqrt{2} \eta^{\mu} J_{\mu}(x) + (2\eta^{\mu} \eta^{\nu} + g^{\mu\nu}) T_{\mu\nu}(x) + \dots$$

Gauge invariance of the coupling gives a "continuity condition"

Tensor currents not conserved, reflecting mixing of tensor fields!

Currents From Matter Particles

In familiar theories, the current from a matter particle is local to its worldline $z^{\mu}(\tau)$

For spinless particles, the minimal couplings are:

$$J(x) = g \int d\tau \, \delta^4(x - z(\tau))$$

$$J^{\mu}(x) = e \int d\tau \, \delta^4(x - z(\tau)) \frac{dz^{\mu}}{d\tau}$$
 should be $\rho \to 0$ limit of
$$T^{\mu\nu}(x) = m \int d\tau \, \delta^4(x - z(\tau)) \frac{dz^{\mu}}{d\tau} \frac{dz^{\nu}}{d\tau}$$
 tensor-like current

Kevin Zhou — Continuous Spin

Locality and Causality

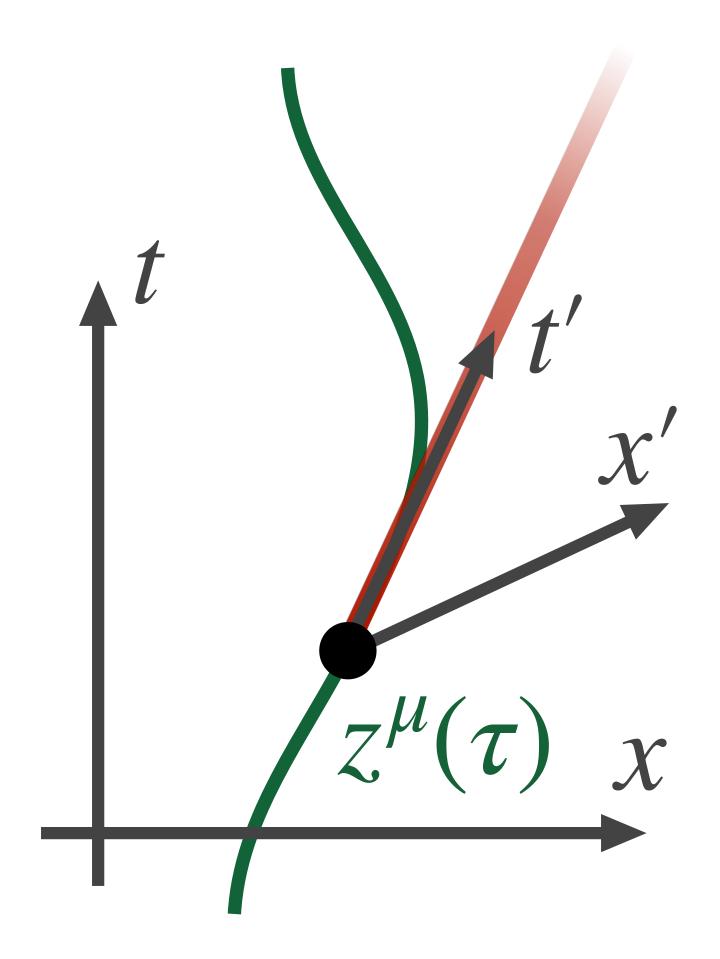
The current and continuity condition in Fourier space are

$$J(\eta, k) = \int d\tau \, e^{ik \cdot z(\tau)} f(\dot{z}, k, \eta) \qquad (-ik \cdot \partial_{\eta} + \rho) f \approx 0$$

Our currents are generically **not** localized to the worldline!

For example, $f = e^{-i\rho\eta \cdot \dot{z}/k \cdot \dot{z}}$ produces a scalar-like current with "wake" confined in future (or past) light cone

This can yield causal particle dynamics; could emerge from integrating out fields in a manifestly local description



A Universality Result

Key technical result: all currents can be decomposed as

$$f = e^{-i\rho\eta \cdot \dot{z}/k \cdot \dot{z}} \, \hat{g}(k \cdot \dot{z}) + \mathcal{D}X$$

First term contains the key physics of nonzero spin scale ρ

Many physical observables are **universal**: determined by only ρ and \hat{g} , where

$$\hat{g} = \begin{cases} g & \text{scalar-like current} \\ e \, k \cdot \dot{z} & \text{vector-like current} \\ m \, (k \cdot \dot{z})^2 + \dots & \text{tensor-like current} \end{cases}$$

"Shape" terms are proportional to the equation of motion operator

Like familiar contact terms, these couplings can be completely removed by field redefinition

All valid currents found in earlier works were pure shape terms, with $\hat{g}=0$

Extracting the Physics

From the action $S[\Psi, z_i^{\mu}(\tau)]$ we can compute any desired classical observable:

"Integrate out" Ψ (plug solution into action)

Find z_i equation of motion with given Ψ

Solve Y equation of motion with given trajectories

Matter interaction potential

 $V(\mathbf{r}_i, \mathbf{v}_i, \dots)$

Depends on "shape" terms

Matter forces in background $\mathbf{F}(\Psi)$

Universal

Radiation emission $dP_h/d\Omega$

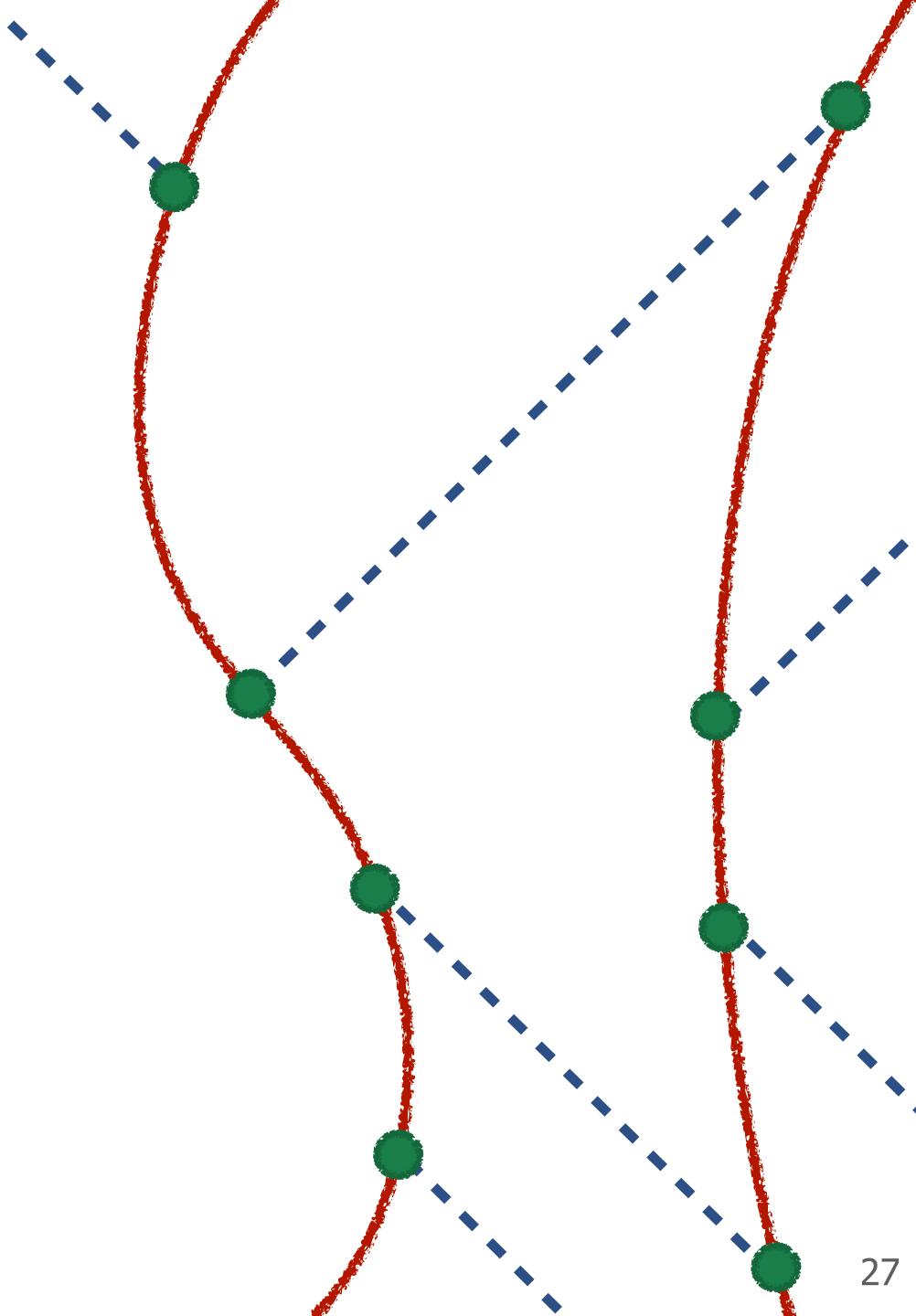
Universal

Outline

• Free continuous spin fields

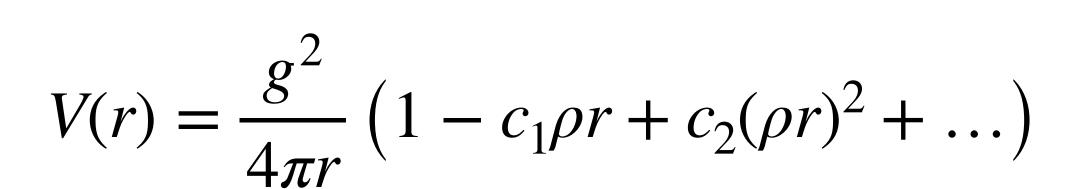
Coupling matter particles

Physics with continuous spin



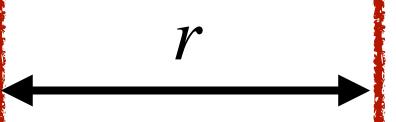
Static Potentials

Static potentials can exhibit deviations at long distances:



Coefficients depend on current: vanish for simplest currents, but for general currents can cause force to flip sign at large distances

Similar results for vector-like currents; can also find velocity-dependent potentials (e.g. corrections to magnetic interaction)



Forces in Background Fields

Force on particle with vector-like current in background of frequency ω , helicity h:

$$\frac{\mathbf{F}_{h=0}}{q} = \frac{\rho}{\omega} \frac{\dot{\phi} \mathbf{v}_{\perp}}{2} + \dots$$

$$\frac{\mathbf{F}_{h=\pm 1}}{q} = \mathbf{E} + \mathbf{v} \times \mathbf{B} - \left(\frac{\rho}{\omega}\right)^{2} \left(\frac{\mathbf{v}_{\perp}(\mathbf{v}_{\perp} \cdot \mathbf{E})}{4} + \frac{v_{\perp}^{2} \mathbf{E}}{8}\right) + \dots$$

$$\frac{\mathbf{F}_{h=\pm 2}}{q} = \frac{\rho}{\omega} \frac{\dot{h}_{+}(v_{x}\hat{\mathbf{x}} - v_{y}\hat{\mathbf{y}})}{4} + \dots$$

Corrections controlled by $\rho v/\omega$, and as $\rho \to 0$ other helicities decouple

Full expressions are Bessel functions, convergent at large arguments

Radiation From Kicked Particle

For any scalar-like current, radiation amplitude from a kicked particle is

$$a_{h,k} \propto g \left(\frac{\tilde{J}_h(\rho \mid \epsilon_- \cdot p/k \cdot p \mid)}{k \cdot p} - \frac{\tilde{J}_h(\rho \mid \epsilon_- \cdot p'/k \cdot p' \mid)}{k \cdot p'} \right)$$

which exactly matches soft emission amplitudes fixed by general arguments

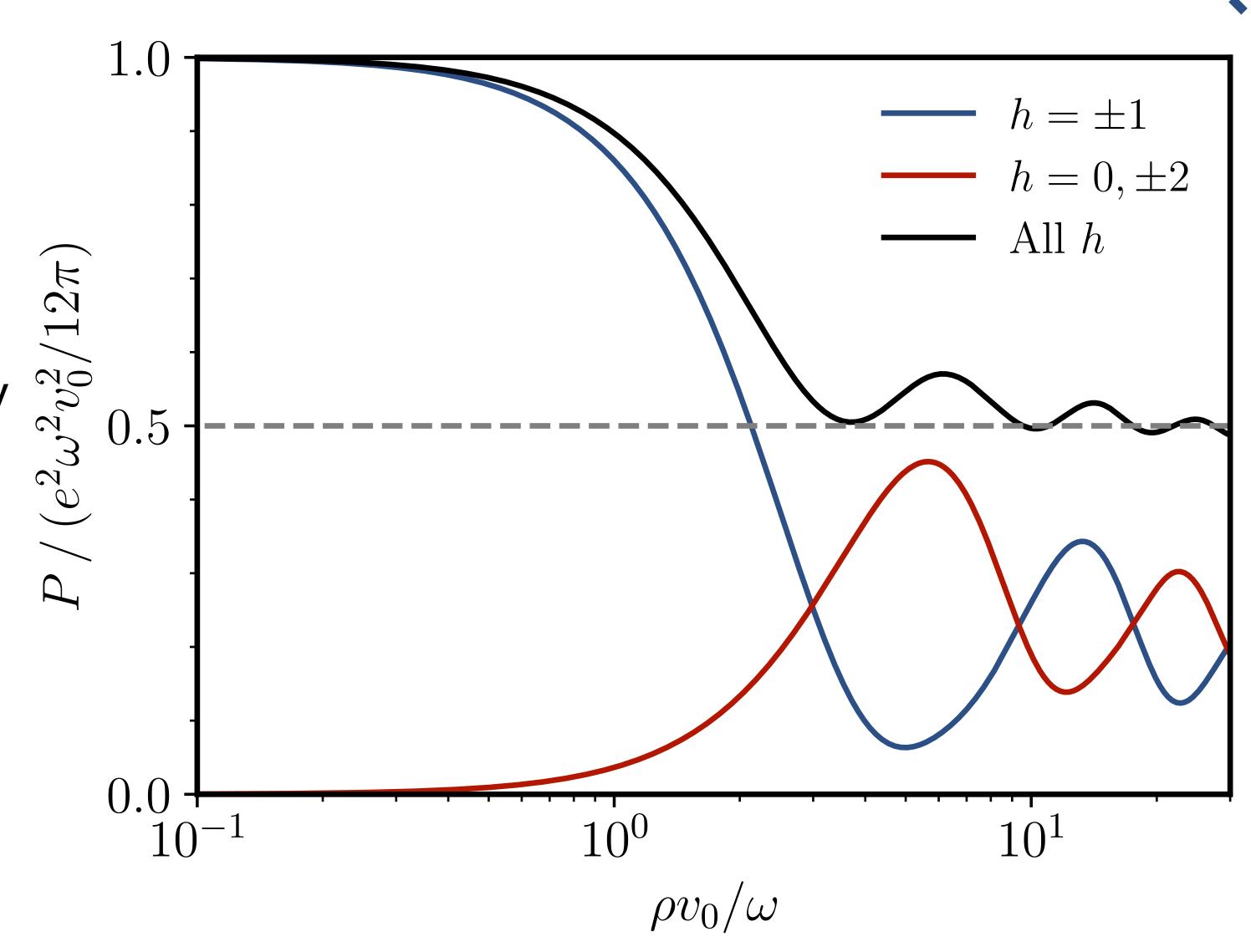
Same agreement for vector-like currents; in both cases other helicities decouple as $\rho \to 0$

Radiation From Oscillating Particle

Consider motion with amplitude $\ell = v_0/\omega$, and vector-like current

Radiation emitted in all helicities, and at large $\rho \mathcal{C}$ many helicities contribute, but total power radiated is finite!

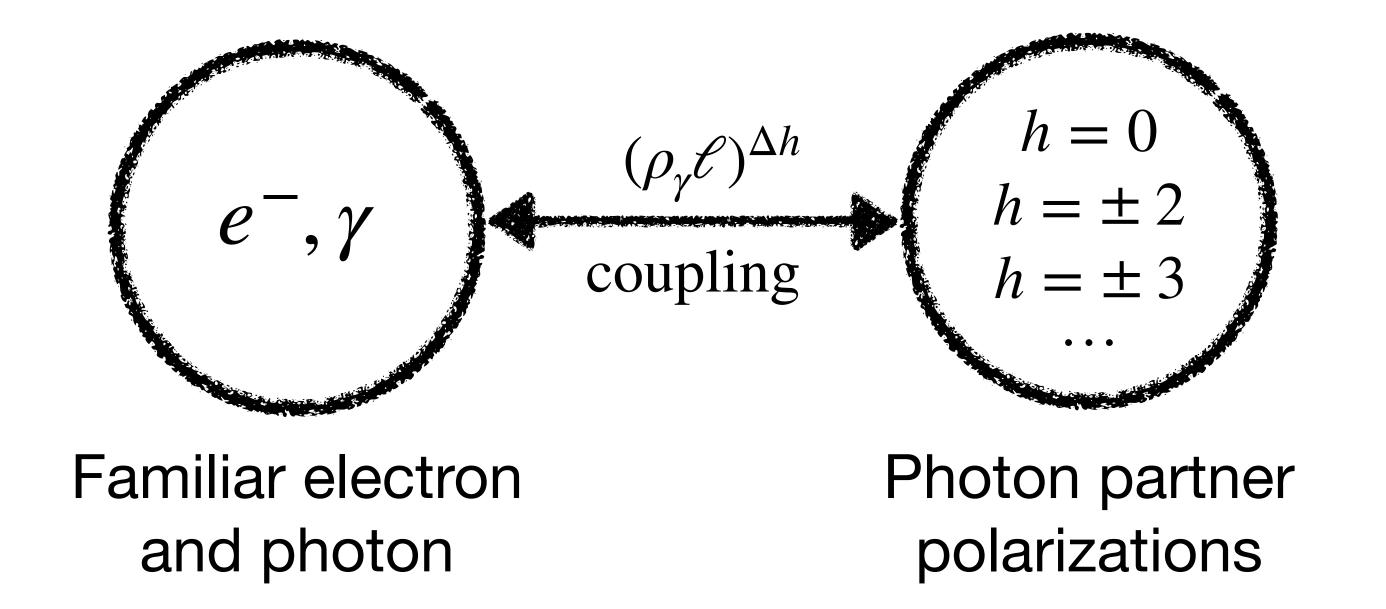
All previously mentioned calculations performed, described in detail in our recent paper



Probing The Spin Scale of the Photon

For vector-like currents, $h = \pm 1$ could be observed photon

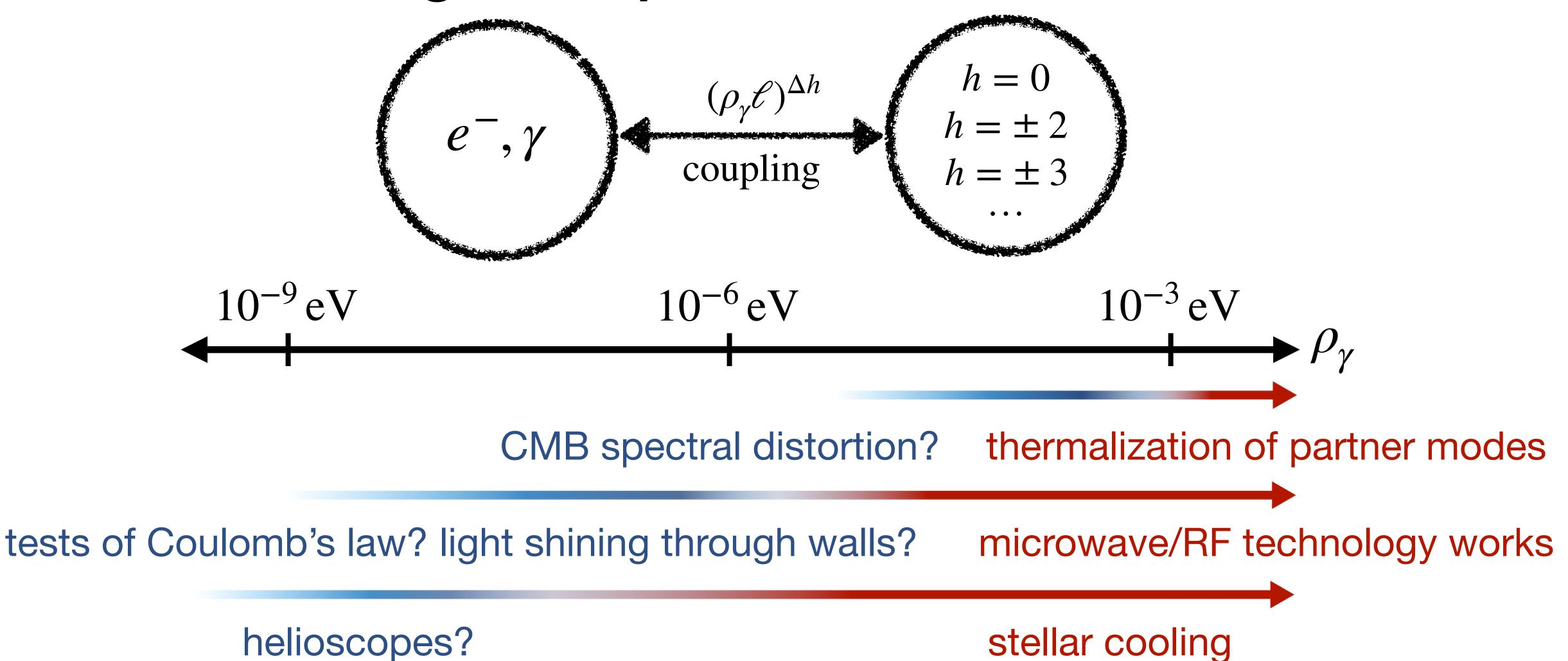
Other helicities are weakly coupled "dark radiation"



Sensitivity of various probes can be readily calculated

Kevin Zhou — Continuous Spin

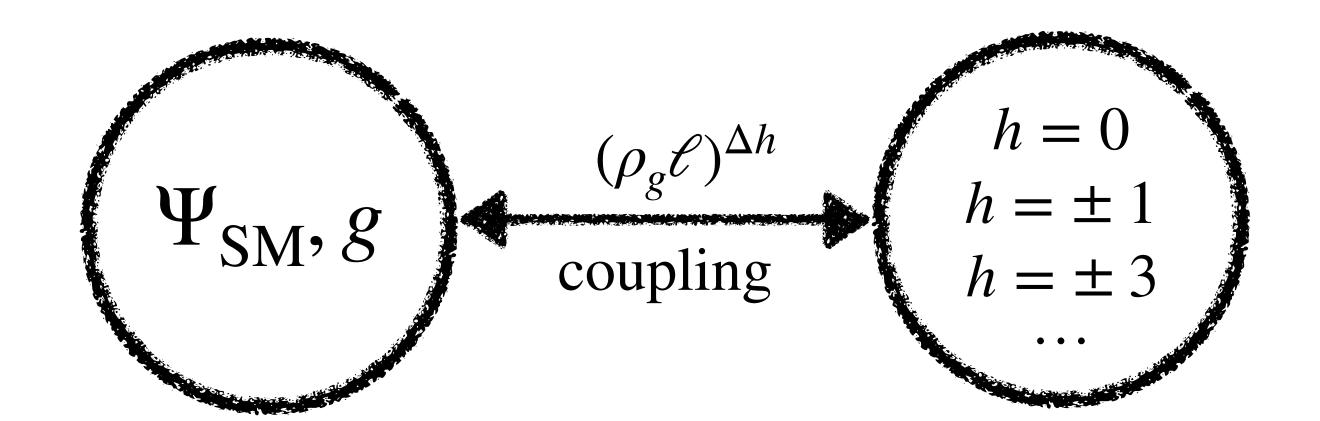
Probing The Spin Scale of the Photon



Very rough, preliminary estimates!

Probing The Spin Scale of the Graviton

Natural next step, requires resolving some subtleties of tensor-like currents

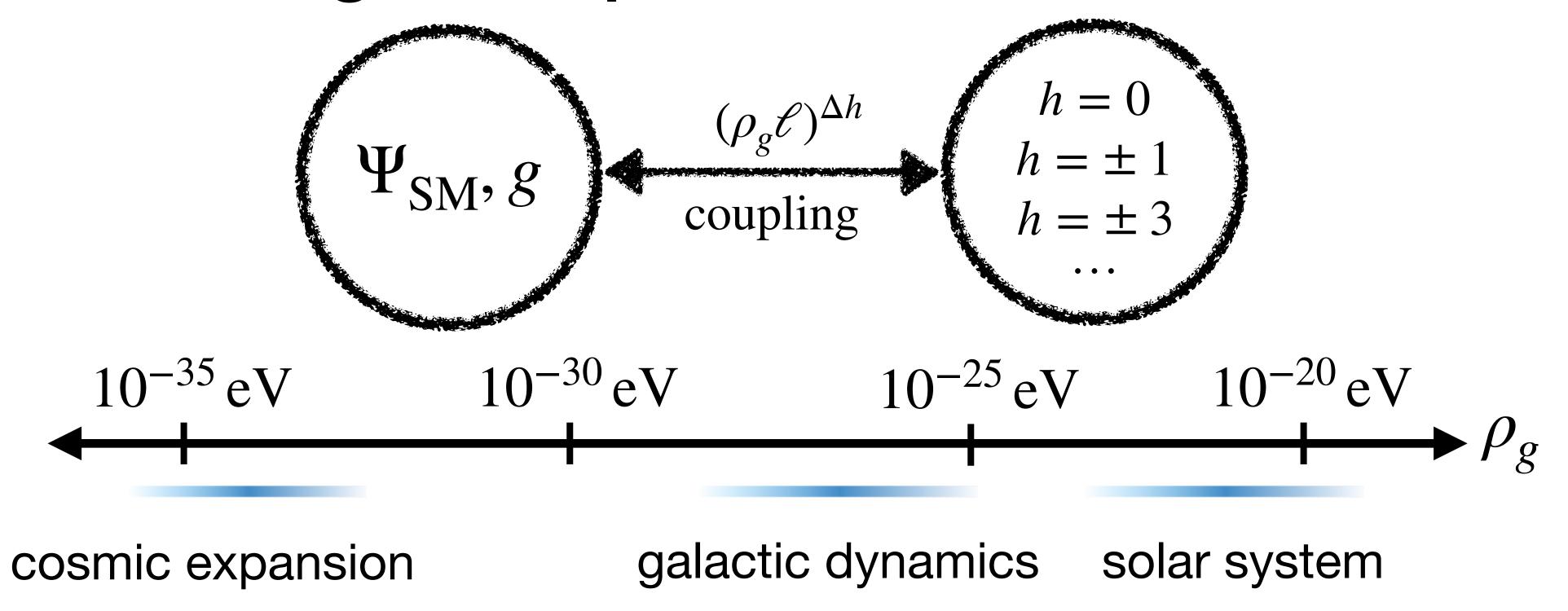


Linearized theory enough for many observables, but full treatment requires understanding nonlinear continuous spin gauge symmetry

(related but independent question: embedding interacting continuous spin fields in background curved spacetime)

Kevin Zhou — Continuous Spin

Probing The Spin Scale of the Graviton



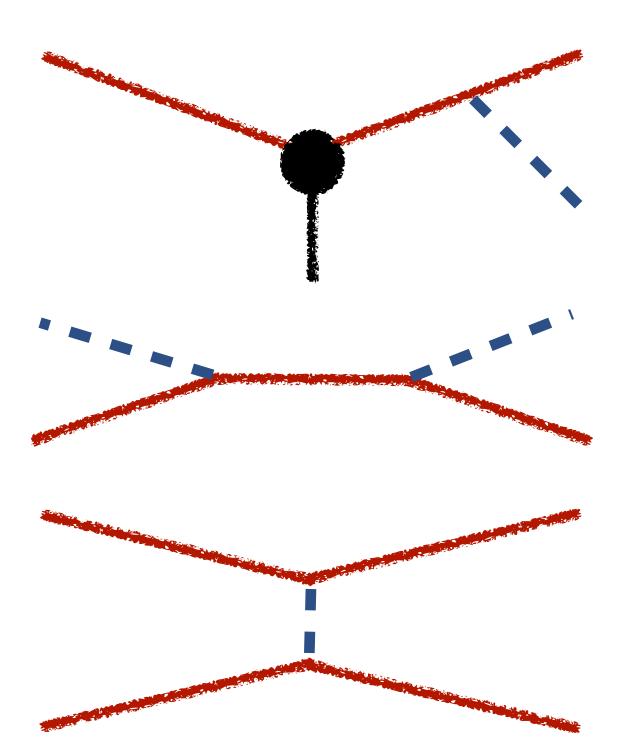
Certain scales motivated by potential deviations from inverse square force

Can also probe universal deviations from gravitational radiation physics

Kevin Zhou — Continuous Spin

Scattering Amplitudes

Scattering amplitudes computable with path integral (worldline formalism)



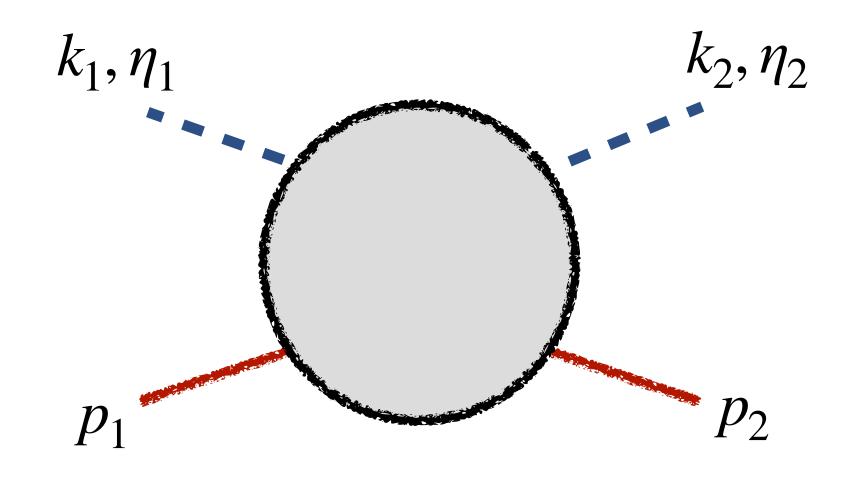
CSP emission straightforward; recovers soft factors

CSP-matter scattering only involves external CSPs, so is universal (computation in progress)

CSP exchange not universal, but obeys tree-level unitarity

Unitarity at loop level unknown, may place constraints on current

Preview: CSP-Matter Scattering



Consider tree-level scattering of vector-like CSP and massless scalar matter

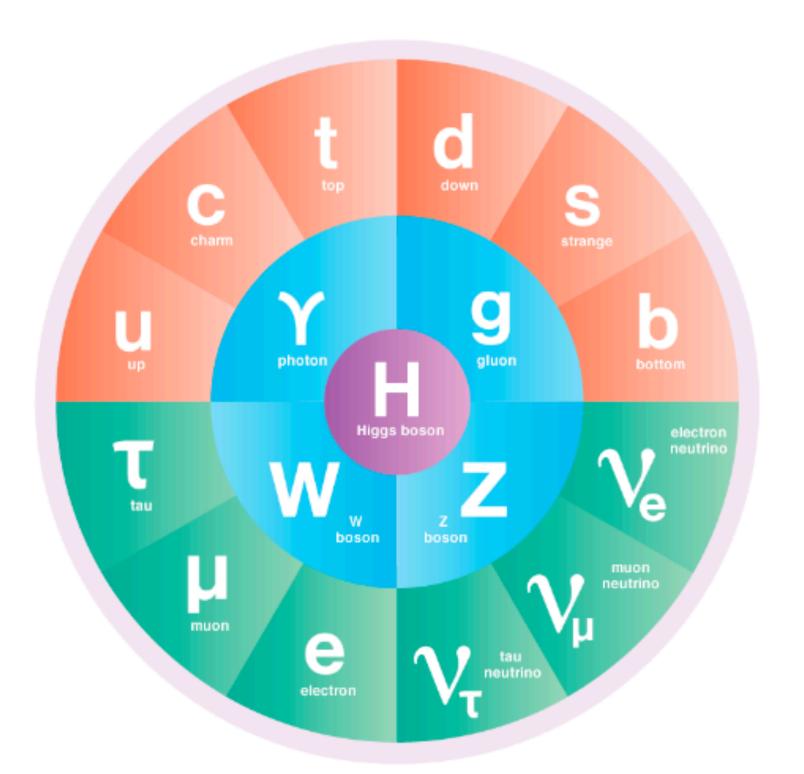
$$P_1 = p_1 + p_2 + xk_2$$
$$P_2 = p_1 + p_2 + xk_1$$

$$\mathcal{M} \sim \int_{-1}^{1} dx \left(\eta_1 - \frac{\eta_1 \cdot P_1}{k_1 \cdot P_1} k_1 \right) \cdot \left(\eta_2 - \frac{\eta_2 \cdot P_2}{k_2 \cdot P_2} k_2 \right) \exp \left(i\rho \left(\frac{\eta_1 \cdot P_1}{k_1 \cdot P_1} - \frac{\eta_2 \cdot P_2}{k_2 \cdot P_2} \right) \right)$$

Reduces to usual scalar QED result for $\rho = 0$ and external |h| = 1 states

A common feature: for nonzero ρ , series expansion of amplitude has pathological higher order poles — but full expression is a benign essential singularity!

A Continuous Spin Standard Model?



Would ultimately want to embed a continuous spin photon within the electroweak sector

Need to give continuous spin fields mass

Need nonabelian continuous spin gauge symmetry

As a first step, consider a Stuckelberg mass term $m^2\Psi^2/2$

Yields massive weakly coupled partner polarizations; natural dark matter candidate?

Connections to the Hierarchy Problem

One framing: familiar scalar particles cannot naturally mediate $1/r^2$ forces

Minimally coupled massless scalar receives large mass corrections $\delta m^2 \sim \Lambda_{\rm HV}^2$

Goldstone bosons like axions have mass protected by shift symmetry — but requires derivative couplings, no $1/r^2$ forces

But continuous spin fields with scalar-like currents **can** mediate $1/r^2$ forces, and their mass is protected by their gauge symmetry!

Protecting Scalar Masses: Bottom Up

One way to see how continuous spin protects the mass of a minimally coupled scalar: truncate the tensor expansion at order ρ

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\rho}{\sqrt{2}} (\phi \partial_{\mu} A^{\mu}) + \phi J - A_{\mu} J^{\mu} + \dots$$

For scalar like current, J dominates and $A^{\mu}, J^{\mu} \propto \rho$ with $\partial_{\mu}J^{\mu} = -\rho J/\sqrt{2}$ Vector field can couple to nonconserved current due to its mixing with ϕ

Action has gauge symmetry $\delta A_{\mu} = \partial_{\mu} \epsilon / \sqrt{2}$, $\delta \phi = \rho \epsilon$ Forbids a scalar mass term for $\rho \neq 0$, but allows a minimal coupling $\phi J!$ Our theory extends this to consistency at all orders in ρ

Kevin Zhou — Continuous Spin

Protecting Scalar Masses: Top Down

A deeper perspective: the action for our theory

$$S = \frac{1}{2} \int_{x,\eta} \delta'(\eta^2 + 1)(\partial_x \Psi)^2 + \frac{1}{2} \delta(\eta^2 + 1)(\Delta \Psi)^2 + \delta'(\eta^2 + 1)\Psi J$$

is symmetric under the bosonic superspace translation $\delta x^{\mu} = \omega^{\mu\nu}\eta_{\nu}$

Corresponds to tensorial conserved charge $i\eta^{[\mu}\partial_x^{\nu]}$ which mixes modes separated by **integer** helicity — a new exception to Coleman-Mandula

Motivates further development, to see if something like this can protect the mass of the Higgs at the quantum level

Conclusion

Lorentz symmetry implies massless particles have a spin scale ρ — is it zero or not?

For nonzero ρ , there are calculable, universal predictions which can be immediately tested!

Grand theory question: are there fully consistent analogues of the full Standard Model and/or general relativity at nonzero ρ ?

If so, they are effective theories at both long and short distances — which can shed light on a variety of fundamental problems

