## **Options if there is time...**

# Alt. 1: (follow-up Rene) Strangeness correlations

# Alt. 2: (follow-up Antonio) $R_{T}$ discussion

# Alt. 1: Strangeness correlations

## How is strangeness produced in p+p?

- Balance functions: correlation functions indicate where balancing charges end up in (Δφ, Δη)
- Example: Ξ<sup>−</sup>K<sup>+</sup> correlations share a s-sbar pair which could come from the same string breaking
  - → but there are also  $\Xi^-K^+$  pairs where the s-sbar is not from the same string, model these with
  - E<sup>-</sup>K<sup>-</sup> correlations and subtract
- Correlations between Ξ baryon and mesons: ΞK → containing a strange quark (Ξπ → without a strange quark)
- Correlations between Ξ baryon and baryons: ΞΛ → containing a strange quark (Ξp → without a strange quark) ΞΞ also measured

### J. Adolfsson ALICE Thesis Award 2021



## How is strangeness produced in p+p?

 Balance functions: correlation functions indicate where balancing charges end up in (Δφ, Δη)





J. Adolfsson

ALICE Thesis

## **EK balance: results**

 $\Delta \varphi$  projection:

 $\Delta y$  projection, near side:



J. Adolfsson ALICE Thesis Award 2021

- Wider NS peak in data than in Pythia → strange quarks produced earlier? more diffusion?
- EPOS has no local conservation of strangeness, predicts flat OS-SS difference, in contradiction to data

## Ep balance: results $\Delta \varphi$ projection:

 $\Delta y$  projection, near side:

0.25 b∇p/Np <sup>6µ1</sup>N/1 ALICE Preliminary pp vs = 13 TeV, minimum bias ALICE Preliminary pp (s = 13 TeV, minimum bias 1/Ntrig dN/dAy  $\Xi$ -p, 1.2 <  $p_{-}^{\text{trig}}$  < 12 GeV/c, 0.4 <  $p_{-}^{\text{assoc}}$  < 3 GeV/c,  $\Xi$ -**p**, 1.2 <  $p_{-}^{ing}$  < 12 GeV/c, 0.4 <  $p_{-}^{assoc}$  < 3 GeV/c, 0.25  $|\Delta y| < 1$  $|\Delta \omega| < 3\pi/10$ SB OB ALICE ALICE PYTHIA8 Monash PYTHIA8 Monash EPOS LHC EPOS LHC **PYTHIA8 Junctions PYTHIA8 Junctions** 0.2 PYTHIA8 Ropes **PYTHIA8 Ropes** 0.15 0.15 0.1 0.1 The second s 85<sub>0.04</sub> 80.04 80.03 The Disch Disc. 0.02 0.02 0.01 2 -0.5 0.5 0 0  $\Delta \phi$  (rad)  $\Delta y$ ALT-PROFE-488447 AT.T-PREL-488451

ALICE Thesis Award 2021

J. Adolfsson

 Junctions and ropes tunes of Pythia are able to get the shape of the **OS-SS** difference right

# Alt. 2: *R*<sub>T</sub> discussion

## QGP features in small systems – pinning down the origin

AA collisions:



• Multiplicity  $(N_{ch})$  mainly driven by participants  $(N_{part})$ 



- **<u>pA collisions</u>**: a combination of the two scenarios
- How to go more in depth than studying the dependence on multiplicity?

- down the origin pp collisions:
- $N_{\text{part}} = 2$ , multiplicity  $(N_{\text{ch}})$  sensitive to specific processes!
- "softer" contribution from multiple partonic interactions (MPI)
- "harder" contribution from the primary process



We will try to answer this by studying the underlying event!



## The Underlying Event (UE)

- UE: collection of particles NOT originating from the primary hard scattering or the related fragmentation
  - MPI, Initial/final state radiation (ISR/FSR), beam remnants
- Analysis of the UE: measuring particle production in Toward/Transverse/Away, w.r.t. to the highest-momentum track  $p_{\rm T}^{\rm lead}$ 
  - Charged particle density:  $\frac{1}{\Delta\eta\Delta\varphi}\frac{1}{N_{\rm ev}}$   $N_{\rm ch}$ , often measured as a function of  $p_{\rm T}^{\rm lead}$



- In Toward/Near (NS), Away (AS):
  - $N_{\rm ch}$  scales with hardness of the process
  - In **Transverse** region (TS):
    - From  $p_{\rm T}\gtrsim 5~{\rm GeV}/c,~N_{\rm ch}$  mostly insensitive to the hard component and dominated by  $N_{\rm MPI}$

Particle density in the Transverse region  $\equiv N_T$ (UE activity or transverse activity)





### Event shape observable: relative underlying event activity $R_{\rm T}$

- $R_{\rm T} = N_{\rm T} / \langle N_{\rm T} \rangle$ , where  $N_{\rm T}$  is charged particle density in Transverse (transverse activity) (introduced in P. Skands et. al., Eur. Phys. J. C **76**, 299 (2016))
  - Defined in events with  $p_{\mathrm{T}}^{\mathrm{lead}} > 5~\mathrm{GeV}/c~
    ightarrow$  plateau region





- $R_{\rm T}$  selects different event composition:
  - $R_{\mathrm{T}} 
    ightarrow 0$  : event dominated by jet,  $N_{\mathrm{MPI}} 
    ightarrow 1$ , dominated by pQCD
  - $R_{\rm T} 
    ightarrow \infty$  : event dominated by UE,  $N_{\rm MPI} > \sim 10$ , softer processes
  - Analysing particle production in the different regions:
    - Transverse, we test the dependence on  $\langle N_{\rm MPI} \rangle$
    - Toward (Away), we test the dependence on the amount of interplay between jet- and UE-dominated production





•  $N_{\rm T}$  : number of charged particles per event in Transverse region.







•  $N_{\rm T}$  and  $R_{\rm T}$  probability distributions : challenging for models to describe



arXiv:2301.10120

### <u>Pion $p_{T}$ spectra : 4 $R_{T}$ intervals</u>

#### arXiv:2301.10120

Toward & Away:

with  $R_{T}$ 

High  $R_{T}$ :

increasing  $R_{T}$ 

with increasing  $R_{T}$ 

Depletion of low  $p_{T}$  increasing

Spectral shapes soften with

Transverse: spectra harden



David Silvermyr (LU)



### <u>Model-to-Data vs $p_T$ : low $R_T$ </u>



 $p_{\rm T}$  > 2 GeV/c Models generally underestimate soft particle production, while Pythia8 with ropes seem

to overestimate

production of protons



### <u>Model-to-Data vs $p_T$ : high $R_T$ </u>



Less agreement between models and data in high  $R_{T}$ interval

ALI-PUB-532114



## **EXTRAS**

#### arXiv:2301.10120

### <u>Kaon $p_{T}$ spectra : 4 $R_{T}$ intervals</u>



<u>Toward & Away</u>:

Depletion of low  $p_{T}$  increasing

with  $R_{T}$ 

High  $R_{T}$ :

Spectral shapes soften with

increasing  $R_{T}$ 

Transverse: spectra harden

with increasing  $R_{T}$ 

<u>mt t</u>ob ssrter



#### arXiv:2301.10120

### <u>Proton $p_{T}$ spectra : 4 $R_{T}$ intervals</u>



Same trends as observed for  $\pi$ , K

Mass-ordering: clearer hardening of transverse spectra with increasing  $R_{T}$  as particle masses

increase

David Silvermyr (LU)



### Take-away #1

- Generally room for improvement in model descriptions of particle  $p_T$ spectra for different  $R_T$  intervals (particularly high  $R_T$ ): trust data will be useful for model authors
- Observed some common trends in data for  $\pi$ , K, p
- Next: study K/ $\pi$  and p/ $\pi$  ratios, and compare with models



### Particle ratios vs p<sub>T</sub>



with increasing  $R_{T}$ Transverse;

 $p/\pi$  ratio: (small) increase with increasing  $R_{T}$ 

Increase at intermediate  $p_{T}$ reminiscent of radial flow

effects



## Particle ratios vs $p_{T}$ : Herwig & EPOS

#### arXiv:2301.10120





## Particle ratios vs $p_T$ : Pythia

#### arXiv:2301.10120



 $K/\pi$  Ratio: PYTHIA systematically lower than data  $p/\pi$  ratio: larger  $R_{T}$  interval more challenging, especially for PYTHIA8 ropes

[N.B.: models tuned to e<sup>+</sup>e<sup>-</sup>]

ALI-PUB-532122



 $\leq p_{T} \geq vs R_{T} \& Models$ 

#### arXiv:2301.10120



Proton data best described by

EPOS LHC

Kaon data challenging for all

 $\pi$  data qualitatively described

by all models



### Particle ratios vs R<sub>T</sub> & Models



described by several models (Herwig predicts a higher ratio)  $p/\pi$  ratio: qualitatively described by several models (PYTHIA8 ropes predicts a significantly higher ratio)



• The two transverse regions are further classified *min.* and *max.* based on the number of charged particles

• Then 
$$R_{\rm T}^{\rm min(max)} = \frac{N_{\rm T}^{\rm min(max)}}{\langle N_{\rm T}^{\rm min(max)} \rangle}$$





- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then  $R_{\rm T}^{\rm min(max)} = \frac{N_{\rm T}^{\rm min(max)}}{\langle N_{\rm T}^{\rm min(max)} \rangle}$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ( $R_T^{min} \propto N_{MPI}$ ,  $R_T^{max} \propto ISR/FSR$ )







- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then  $R_{\mathrm{T}}^{\mathrm{min(max)}} = \frac{N_{\mathrm{T}}^{\mathrm{min(max)}}}{\langle N_{\mathrm{T}}^{\mathrm{min(max)}} \rangle}$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ( $R_T^{min} \propto N_{MPI}$ ,  $R_T^{max} \propto ISR/FSR$ )





• ALICE now has preliminary results on charged particle densities in Trans., min and Trans., max regions in pp collisions at  $\sqrt{s} = 2.76$ , 5.02, 7, 13 TeV



- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then  $R_{\mathrm{T}}^{\mathrm{min}(\mathrm{max})} = \frac{N_{\mathrm{T}}^{\mathrm{min}(\mathrm{max})}}{\langle N_{\mathrm{T}}^{\mathrm{min}(\mathrm{max})} \rangle}$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ( $R_T^{min} \propto N_{MPI}$ ,  $R_T^{max} \propto ISR/FSR$ )





- ALICE now has preliminary results on charged particle densities in Trans., min and Trans., max regions in pp collisions at  $\sqrt{s} = 2.76$ , 5.02, 7, 13 TeV
- Results on identified particle spectra in Trans., min regions vs  $R_{\rm T}^{\rm min(max)}$  will be key in understanding the role of MPI
  - Currently underway!

