Options if there is time…

Alt. 1: (follow-up Rene) Strangeness correlations

Alt. 2: (follow-up Antonio) *R***^T discussion**

Alt. 1: Strangeness correlations

How is strangeness produced in $p+p$?

- Balance functions: correlation functions indicate where balancing charges end up in $(\Delta \varphi, \Delta \eta)$
- Example: $E-K^+$ correlations share a s-sbar pair which could come from the same string breaking
	- \rightarrow but there are also $E-K^+$ pairs where the s-sbar is not from the same string, model these with
	- $F-K$ ⁻ correlations and subtract
- Correlations between Ξ baryon and mesons: $EK \rightarrow$ containing a strange quark $(\Xi \pi \rightarrow$ without a strange quark)
- Correlations between Ξ baryon and baryons: $\Xi \Lambda \rightarrow$ containing a strange quark $(Ep \rightarrow without a strange quark)$ E also measured

J. Adolfsson **ALICE Thesis** Award 2021

How is strangeness produced in $p+p$?

• Balance functions: correlation functions indicate where balancing charges end up in $(\Delta \varphi, \Delta \eta)$

J. Adolfsson

ALICE Thesis

EK balance: results

 $\Delta\varphi$ projection:

 Δy projection, near side:

J. Adolfsson **ALICE Thesis Award 2021**

- Wider NS peak in data than in Pythia \rightarrow strange quarks produced earlier? more diffusion?
- EPOS has no local conservation of strangeness, predicts flat OS-SS difference, in contradiction to data

Ep balance: results $\Delta\varphi$ projection: Δy projection, near side:

J. Adolfsson **ALICE Thesis Award 2021**

• Junctions and ropes tunes of Pythia are able to get the shape of the OS-SS difference right

Alt. 2: R_T discussion

QGP features in small systems – pinning down the origin

AA collisions:

Multiplicity ($N_{\rm ch}$) mainly driven by participants ($N_{\rm part}$)

- pA collisions: a combination of the two scenarios
- *How to go more in depth than studying the dependence on multiplicity?*
- pp collisions:
- $N_{\text{part}} = 2$, multiplicity (N_{ch}) sensitive to specific processes!
- \bullet , softer" contribution from multiple partonic interactions (MPI)
- \bullet , harder" contribution from the primary process

We will try to answer this by studying the underlying event!

The Underlying Event (UE)

- UE: collection of particles NOT originating from the primary hard scattering or the related fragmentation
	- MPI, Initial/final state radiation (ISR/FSR), beam remnants
- Analysis of the UE: measuring particle production in Toward/Transverse/Away, w.r.t. to the highest-momentum track $p_{\rm T}^{\rm lead}$
	- Charged particle density: $\frac{1}{\Delta \eta \Delta \varphi}$ $\mathbf 1$ $\frac{1}{N_{\rm ev}}$ $N_{\rm ch}$, often measured as a function of $p_{\rm T}^{\rm lead}$

- In Toward/Near (NS) , Away (AS) :
	- \bullet $N_{\rm ch}$ scales with hardness of the process
	- In Transverse region (TS):
		- From $p_T \gtrsim 5$ GeV/*c*, N_{ch} mostly insensitive to the hard component and dominated by N_{MPI}

Particle density in the Transverse region $\equiv N_T$ (UE activity or transverse activity)

Event shape observable: relative underlying event activity R_{T}

- $R_T = N_T / \langle N_T \rangle$, where N_T is charged particle density in Transverse (transverse activity) (introduced in P. Skands et. al., Eur. Phys. J. C 76, 299 (2016))
	- Defined in events with $p_T^{\text{lead}} > 5$ GeV/ $c \rightarrow$ plateau region

- R_T selects different event composition:
	- $R_T \rightarrow 0$: event dominated by jet, $N_{\text{MPI}} \rightarrow 1$, dominated by pQCD
	- $R_T \rightarrow \infty$: event dominated by UE, $N_{\text{MPI}} > -10$, softer processes
	- Analysing particle production in the different regions:
		- Transverse, we test the dependence on (N_{MPI})
		- Toward (Away), we test the dependence on the amount of interplay between jet- and UE-dominated production

 N_T : number of charged particles per event in Transverse region. $R_T = N_T/\langle N_T \rangle$

 \bullet N_{T} and R_{T} probability distributions : challenging for models to describe

arXiv:2301.10120

P *<u>Pion* p_T *spectra : 4* R_T *intervals</u>*

arXiv:2301.10120

Toward & Away:

with R_{T}

High R_T :

increasing R_T

with increasing R_{T}

Depletion of low p_T increasing

Spectral shapes *soften* with

Transverse: spectra *harden*

David Silvermyr (LU) 12

Model-to-Data vs p_T **: low** R_T

 π ,K qualitatively reproduced by models at $p_T > 2$ GeV/ c Models generally underestimate soft particle production, while Pythia8 with ropes seem

production of protons

Model-to-Data vs p_T **: high** R_T

Less agreement between models and data in high R_T interval

EXTRAS

Kaon p_T **spectra : 4** R_T **intervals arXiv:2301.10120**

Toward & Away:

Depletion of low p_T increasing

with R_{T}

High R_{T} :

Spectral shapes *soften* with

increasing R_T

Transverse: spectra *harden*

with increasing R_{T}

arXiv:2301.10120

Proton p_{T} **spectra** : 4 R_{T} **intervals**

Same trends as observed for π , K

Mass-ordering: clearer hardening of transverse spectra with

increasing R_T as particle masses

increase

Take-away #1

• Generally room for improvement in model descriptions of particle p_T spectra for different R_T intervals (particularly high R_T): trust data will be useful for model authors

- Observed some common trends in data for π , K, p
- Next: study K/π and p/π ratios, and compare with models

Particle ratios vs p_T

Particle ratios vs p_T : Herwig & EPOS

arXiv:2301.10120

Particle ratios vs p_T : Pythia

arXiv:2301.10120

 K/π Ratio: PYTHIA systematically lower than data p/π ratio: larger R_T interval more challenging, especially for PYTHIA8 ropes [N.B.: models tuned to e⁺e⁻]

≤*p*_T > vs *R*_T & Models

arXiv:2301.10120

Proton data best described by EPOS LHC

Kaon data challenging for all

 π data qualitatively described

by all models

Particle ratios vs R_T & Models

arXiv:2301.10120

described by several models (Herwig predicts a higher ratio) p/π ratio: qualitatively described by several models (PYTHIA8 ropes predicts a significantly higher ratio)

Outlook/Using the $R_{\rm T}^{\rm min(max)}$ to disentangle ISR/FSR

● The two transverse regions are further classified *min.* and *max.* based on the number of charged particles

• Then
$$
R_T^{\min(max)} = \frac{N_T^{\min(max)}}{(N_T^{\min(max)})}
$$

Outlook/Using the $R_{\text{T}}^{\min(\text{max})}$ to disentangle ISR/FSR

- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then $R_{\rm T}^{\rm min(max)}$ = $N_{\text{T}}^{\min(\text{max})}$ $\langle N_{\rm T}^{\rm min(max)}\rangle$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ($R_{\textrm{T}}^{\textrm{min}} \propto N_{\textrm{MPI}}$, $R_{\textrm{T}}^{\textrm{max}} \propto \textrm{ISR/FSR)}$

Outlook/Using the $R_{\text{T}}^{\min(\text{max})}$ to disentangle ISR/FSR

- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then $R_{\rm T}^{\rm min(max)}$ = $N_{\text{T}}^{\min(\text{max})}$ $\langle N_{\rm T}^{\rm min(max)}\rangle$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ($R_{\textrm{T}}^{\textrm{min}} \propto N_{\textrm{MPI}}$, $R_{\textrm{T}}^{\textrm{max}} \propto \textrm{ISR/FSR)}$

ALICE now has preliminary results on charged particle densities in Trans., min and Trans., max regions in pp collisions at $\sqrt{s} = 2.76$, 5.02, 7, 13 TeV

Outlook/Using the $R_{\text{T}}^{\min(\text{max})}$ to disentangle ISR/FSR

- The two transverse regions are further classified *min.* and *max.* based on the number of charged particles
- Then $R_{\rm T}^{\rm min(max)}$ = $N_{\text{T}}^{\min(\text{max})}$ $\langle N_{\rm T}^{\rm min(max)}\rangle$
- Can be used to disentangle the radial flow-like effects and the ISR/FSR contamination ($R_{\textrm{T}}^{\textrm{min}} \propto N_{\textrm{MPI}}$, $R_{\textrm{T}}^{\textrm{max}} \propto \textrm{ISR/FSR)}$

- ALICE now has preliminary results on charged particle densities in Trans., min and Trans., max regions in pp collisions at $\sqrt{s} = 2.76$, 5.02, 7, 13 TeV
- Results on identified particle spectra in Trans., min regions vs $R_{\textrm{T}}^{\textrm{min(max)}}$ will be key in understanding the role of MPI
	- Currently underway!

