Charm and bottom production

Torbjörn Sjöstrand, Lund University

Some LHC observations in pp events:

- $\bullet\,$ Charm/bottom baryon-to-meson ratio is significantly enhanced relative to "vacuum" $e^+e^-.$
- This is a low- p_{\perp} phenomenon, with "vacuum" recovered for $p_{\perp} > 20$ GeV.
- Only mild increase with multiplicity.
- More $\Lambda^0_{\rm b}$ than $\overline{\Lambda}^0_{\rm b}$ in forward direction.

To consider

- How can this be modelled? Both string and QGP scenarios have been proposed, but do they hold water?
- Can we define observables to distinguish scenarios?

Charm baryon differential distributions

(2106.08278, 2105.05616, 2111.11948) QCDCR option much better than PYTHIA default, but not perfect. Catania best other model,

but note wriggle at low p_{\perp} .

Backup: The beauty baryon enhancement

Colour reconnection models

"Recent" PYTHIA option: QCD-inspired CR (QCDCR) (1505.01681):

Models of and conclusions on particle composition

Other models, in a heavy-ion physics spirit:

- QCM: Quark (re)Combination Mechanism, with co-moving light quarks being picked up. (1801.09402)
- SHM+RQM: Statistical Hadronization Model + Relativistic Quark Model. Thermo-statistical production with extensive feeddown from heavier charm baryon states. (1902.08889)
- Catania: use AA models of quark–gluon plasma formation. Coalescence of nearby quarks at small p_{\perp} , while "normal" fragmentation at higher p_{\perp} . (2012.12001)

Tentative conclusion:

- "Vacuum" evolution at large p_{\perp} , like in e^+e^- and ep.
- Collective effects take over at small p⊥, where MPIs give close-packing of quarks/gluons/strings/clusters/hadrons.

Breakdown of jet universality, like for strangeness!

Backup: Catania coalescence

FIG. 1: (Color online) The charm quark coalescence probability as a function of the charm quark p_T for pp collisions at LHC. The different lines are the coalescence probabilities to produce the different hadron species. Black solid line is the total coalescence probability.

Bottom asymmetries

$$A(y), A(p_{\perp}) = rac{\sigma(\Lambda_{
m b}^0) - \sigma(\overline{\Lambda}_{
m b}^0)}{\sigma(\Lambda_{
m b}^0) + \sigma(\overline{\Lambda}_{
m b}^0)}$$

CR1 = QCDCR shows no enhancement at low p_{\perp} . Enhanced $\Lambda_{\rm b}$ production at low p_{\perp} from junction reconnection, like for $\Lambda_{\rm c}$, dilutes asymmetry?

Asymmetries observed also for other charm and bottom hadrons. Other models not yet compared with data (?).

Backup: Beam drag effects

Colour flow connects hard scattering to beam remnants. Can have consequences, e.g. in π^-p :

If low-mass string e.g.: $\overline{cd} : D^-, D^{*-}$ $cud : \Lambda_c^+, \Sigma_c^+, \Sigma_c^{*+}$ \Rightarrow flavour asymmetries \overline{c} \overline{c} Can give *D* "drag" to

larger $x_{\rm F}$ than c quark.