

Flow in small collision systems A. Dobrin (Institute of Space Science)

- Minimum bias pp
 - Jet peak on the near side (+ resonances)
 - Recoil jet on the away side
- High multiplicity pp
 - Near side ridge, typical of collective systems
 - Decomposed into Fourier harmonics \boldsymbol{v}_n

$$1 + \sum_{n=1}^{\infty} 2 v_n \cos(n(\varphi - \Psi_n))$$

A. Dobrin - Holmganga: CLASH Workshop 2023

Two-particle correlations

scđi

3

Two-particle correlations: non-flow removal?

- Differences between ATLAS and CMS v₂ due to subtraction technique
 - Small difference even between ATLAS v_2 subtracted and CMS v_2 un-subtracted
- Comparison with theoretical calculations?

06/29/23

A. Dobrin - Holmganga: CLASH Workshop 2023

Multi-particle cumulants

06/29/23

A. Dobrin - Holmganga: CLASH Workshop 2023

- Mass ordering observed in high multiplicity p-Pb and pp collisions
 - Test particle type dependence at high p_{T}
- Extend the measurements to multi-particle cumulants

High Multiplicity pp Workshop

scđi

CGC + Lund

(p+p 7 TeV)

5

Sources of collectivity

- Final state effects
 - Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape
- Initial state effects
 - Initial momentum anisotropies from initial interactions
 - Color Glass Condensate (CGC) Glasma
 - Color-field domains
 - Numerical solutions

How to disentangle different regimes?

A. Dobrin - Holmganga: CLASH Workshop 2023

9

"Flow" in PYTHIA 8.309 (default): minimum bias pp @ 13.6 TeV

- Mass ordering when a large gap is used
- $c_2{2} > 0$ and $c_2{4} \sim 0$ at high multiplicities
 - Small dependence on $|\Delta \eta|$ gap for $c_2\{2\}$

06/29/23

A. Dobrin - Holmganga: CLASH Workshop 2023

• $c_3\{2, |\Delta \eta|\} < 0$ and $c_3\{4\} \sim 0$ at high multiplicities

- Small dependence on $|\Delta \eta|$ gap for c₃{2}

iscoti

"Flow" in PYTHIA 8.309 (Angantyr): minimum bias p-Pb @ 5.02 TeV

- $c_2\{2\}\sim 0$ and $c_2\{4\}\sim 0$ at high multiplicities
 - Small dependence on $|\Delta\eta|$ gap for $c_2\{2\}$

06/29/23

A. Dobrin - Holmganga: CLASH Workshop 2023

• $c_3\{2, |\Delta \eta|\} \sim 0$ and $c_3\{4\} \sim 0$ at high multiplicities

- Small dependence on $|\Delta \eta|$ gap for c₃{2}

UB Fiscoli

06/29/23

"Flow" in EPOS4 (hydro+rescattering): minimum bias pp @ 13.6 TeV

- · Mass ordering more pronounced when a large gap is used
- $c_2{2} > 0$ and $c_2{4} \sim 0$ at high multiplicities
 - Small dependence on $|\Delta \eta|$ gap for c₂{2}
 - A. Dobrin Holmganga: CLASH Workshop 2023

• $c_3\{2, |\Delta \eta|\} \sim 0$ and $c_3\{4\} \sim 0$ at high multiplicities

- Small dependence on $|\Delta \eta|$ gap for c₃{2}