CGS vs EPOS : theory vs data ?

High Energy Hadronic Interactions

General case : valid for pp if enough particles are produced !

From K. Werner

note: S-matrix theory is a useful tool!

EPOS in practice :

- Colored flux tube as in GLASMA
- Saturation as in CGC
- \rightarrow Factorization and binary scaling
- **→ Core-corona with hydro**

Outcome

Saturation scale, core fraction, etc ... from DATA (best global fit)

What value for the saturation scale ?

Tried CGC inspired numerical values in EPOS

 \rightarrow Failed to reproduce data

New approached based on factorisation + S-matrix

- \rightarrow Match pQCD amplitude with one compatible with cross-section and multiplicity (taking into account the fact that multiplicity is reduced by hydo (mass \rightarrow flow))
- \rightarrow Different saturation scale for each mini-jet with large variation event by event and for all systems

- "Saturation" below pt of 10 GeV @ LHC in average
- Extremely large difference from low to high multiplicity event
- Is it compatible with predictions from CGC ?

If not ?

- Not the same saturation ?
- Calculation to simplified ?
- How to account for the fluctuations ?

Event-by-Event Energy Density : AuAu

- Bumpy structure of energy density in transverse plane, but translational invariance
	- pseudorapidity extension of flux tubes4

AuAu : Di-hadron correlation

ridge-structure in the dihadron correlation dN/dΔηdΔφ for free

AuAu 0-10%, $3 < p_t^{\text{trig}} < 4 \,\mathrm{GeV/c}$ $2 < p_t^{\text{assoc}} < p_t^{\text{trig}}$

pp@7 TeV : Di-hadron correlation

 \rightarrow Our calculation provides a similar ridge structure in pp@LHC using particles with $1 < pt < 3$ GeV/c, for high multiplicity events

How could CGC alone (and even with Pythia) reproduce data ?

- Saturation : no linear <pt> charm increase
- Hydro : decrease final multiplicity for a given MPI

core-corona effect + microcanonical effect core-corona effect saturation effect + flow effect

Be aware … data are not limited to one distribution !

- *The Color Glass Condensate, Glasma and the Quark Gluon Plasma in the Context of Recent pPb Results from LHC.* **Larry McLerran** doi:10.1088/1742-6596/458/1/012024
- On a deep connection between factorization and saturationnew insight into modeling high-energy protonproton and nucleus-nucleus scattering in the EPOS4 framework. **K. Werner.** 2301.12517 [hep-ph]
- *Perturbative QCD concerning light and heavy flavor in the EPOS4 Framework.* **K. Werner and B. Guiot.** 2306.02396 [hep-ph]
- *Core-corona procedure and microcanonical hadronization to understand strangeness enhancement in proton-proton and heavy ion collisions in the EPOS4 framework* **K. Werner.** 2306.10277 [hep-ph]

Parton-Based Gribov-Regge Theory

Energy sharing at the cross section level

- **Energy shared between cut and** uncut diagrams (Pomeron)
- Reduced number of elementary interactions
- Generalization to (h)A-B
- \rightarrow Particle production from momentum fraction matrix (Markov chain metropolis)

Non-linear effect (screening) absorbed in modified vertex functions

Holmganga – June 2023 **T. Pierog, KIT - 10/9**

Number of cut Pomerons

Fluctuations reduced by energy sharing (mean can be changed by parameters)

EPOS : Pomeron definition

- Theory based Pomeron definion
	- **pQCD based so large increase at small x (no saturation)**
	- **produce too high cross section**
	- corrections needed using enhanced diagrams (triple Pomeron vertex)
		- \rightarrow effective coupling vertex

Cross Section Calculation : EPOS

- **PBGRT : Gribov-Regge but with energy sharing at** parton level
- \rightarrow amplitude parameters fixed from QCD and pp cross section (semi-hard Pomeron)
- **Cross section calculation take into account** interference term

$$
\sigma_{\rm ine}(s) \;\; = \;\; \int d^2b \, (1-\Phi_{\rm pp}(1,1,s,b)) \;\; \biggr| \;\;
$$

$$
\Phi_{\text{pp}}(x^+, x^-, s, b) = \sum_{l=0}^{\infty} \int dx_1^+ dx_1^- \dots dx_l^+ dx_l^- \left\{ \frac{1}{l!} \prod_{\lambda=1}^l -G(x_\lambda^+, x_\lambda^-, s, b) \right\} \times F_{\text{proj}}(x^+ - \sum x_\lambda^+) F_{\text{targ}}(x^- - \sum x_\lambda^-).
$$

can not use complex diagram with energy sharing: non linear effects taken into account as correction of single amplitude G

EPOS – high parton density effects

Parton Distribution Function

Particle Production in EPOS

m number of exchanged elementary interaction per event fixed from elastic amplitude taking into account energy sharing :

 \rightarrow m cut Pomerons from :

$$
\Omega^{(s,b)}_{AB}(m,X^+,X^-) = \prod_{k=1}^{AB} \left\{ \frac{1}{m_k!} \prod_{\mu=1}^{m_k} G(x_{k,\mu}^+,x_{k,\mu}^-,s,b_k) \right\} \ \Phi_{AB}\left(x^{\rm proj},x^{\rm targ},s,b\right)
$$

 \Box m and X fixed together by a complex Metropolis (Markov chain)

 \rightarrow 2m strings formed from the m elementary interactions

 \Box energy conservation : energy fraction of the 2m strings given by X

consistent scheme : energy sharing reduce the probability to have large m

Consistent treatment of cross section and particle production: number AND distribution of cut Pomerons depend on cross section

Simplest case: e⁺e⁻ annihilation into quarks

Test at LEP

Holmganga – June 2023 T. Pierog, KIT - 18/9

Basic Distributions

Holmganga – June 2023 T. Pierog, KIT - 19/9

Remnants

Forward particles mainly Forward particles mainly from projectile remnant from projectile remnant dn/dy \uparrow SPS low ~7 GeV dn/dy \uparrow SPS high ~17 GeV dn/dy / **RHIC** 200 GeV strings dn/dy **LHC** 7000 GeV remnant

- \rightarrow At very low energy only particles from remnants
- At low energy (fixed target experiments) (SPS) strong mixing
- At intermediate energy (RHIC) mainly string contribution at mid-rapidity with tail of remnants.
- At high energy (LHC) only strings at midrapidity (baryon free)

Different contributions of Different contributions of particle production at different particle production at different energies or rapidities energies or rapidities

Remnants

Free remnants in EPOS:

- from both diffractive or inelastic \mathcal{L} scattering
- excited state with P(M)~1/(M²)^{α}
- dominant contribution at low energy \Rightarrow
- forward region at high energy
- depending on quark content and mass (excitation):
	- resonance
	- string 國
	- droplet (if #q>3)
	- string+droplet

Baryons and Remnants

Parton ladder string ends :

Problem of multi-strange baryons at low energy (Bleicher et al., Phys.Rev.Lett.88:202501,2002)

Baryon Production

Holmganga – June 2023 T. Pierog, KIT - 23/9

High Density Core Formation

Heavy ion collisions or very high energy proton-proton scattering:

 \rightarrow the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : **core**

Core in p-p

Detailed description can be achieved with core in pp

- \rightarrow identified spectra: different strangeness between string (low) and stat. decay (high)
- $\bm{{\mathsf{p}}}_{\mathsf{t}}$ behavior driven by collective effects (statistical hadronization + flow)

larger effect for multi-strange baryons (yield AND $<$ p $_{\rm t}$ >)

EPOS 3

Use saturation scale to have a Q² dependent screening

- restore binary scaling for high $\bm{{\mathsf{p}}}_{\mathsf{t}}$
- intermediate $\bm{{\mathsf{p}}}_{_{\sf t}}$ due to flow based on real hydro simulations

mass splitting

Real 3D Hydro

Particle ratio Particle ratio characteristic characteristic of collective of collective flow effect. flow effect.

PbPb @ LHC

Correlations in PbPb@LHC

Fourier coefficient for most central events

Collective effects

 \rightarrow One decade of RHIC experiments (heavy ion, pp, and dAu scattering,up to 200 GeV)

heavy ion collisions produce matter which expands as an heavy ion collisions produce matter which expands as an almost ideal fluid almost ideal fluid

 \rightarrow mainly because azimuthal anisotropies can be explained on the basis of ideal hydrodynamics (mass splitting etc)

LHC pp results: first signs for collective behavior as well ...

Approach (1)

pp@LHC treated as Heavy Ion:

- \rightarrow Multiple scattering approach EPOS (marriage of pQCD and Gribov-Regge) :
	- \rightarrow initial condition for a hydrodynamic evolution if the energy density is high enough
- **Exercise event-by-event procedure**
	- taking into the account the irregular space structure of single events :
		- \rightarrow ridge structures in two-particle correlations
- core-corona separation :
	- \Box only a part of the matter thermalizes;
- \rightarrow 3+1 D hydro evolution
	- conservation of baryon number, strangeness, and electric charge

Approach (2)

pp@LHC treated as Heavy Ion:

- **D** parton-hadron transition
	- \blacktriangleright realistic equation-of-state, compatible with lattice gauge results
	- cross-over transition from the hadronic to the plasma phase
- \rightarrow hadronization,
	- ◆ Cooper-Frye, using complete hadron table
	- at an early stage (166 MeV, in the transition region)
	- with subsequent hadronic cascade procedure (UrQMD)

details see:

arXiv:1004.0805, arXiv:1010.0400, arXiv:1011.0375 (ridge in pp) arXiv:1203.5704 (jet-bulk interaction)

Energy Density

Initial conditions at proper time τ=τ 0

 \rightarrow Energy tensor :

$$
T^{\mu\nu}(x) = \sum_{i} \frac{\delta p_i^{\mu} \delta p_i^{\nu}}{\delta p_i^0} g(x - x_i), \quad \delta p = \left\{ \frac{\partial X(\alpha, \beta)}{\partial \beta} \delta \alpha + \frac{\partial X(\alpha, \beta)}{\partial \alpha} \delta \beta \right\}
$$

 \rightarrow Flavor flow :

$$
N_q^{\mu}(x) = \sum_i \frac{\delta p_i^{\mu}}{\delta p_i^0} q_i g(x - x_i), \quad q \in \{u, d, s\}
$$

Evolution according to the equations of ideal hydrodynamics: \bullet

$$
\partial_{\mu}T^{\mu\nu} = 0
$$
, using $T^{\mu\nu} = (\epsilon + p) u^{\mu}u^{\nu} - p g^{\mu\nu}$

$$
\partial N_k^{\mu} = 0, \quad N_k^{\mu} = n_k u^{\mu},
$$

with $k = B$, S, Q referring to respectively baryon number, strangeness, and electric charge.

Check with Heavy Ions : AuAu@RHIC

Important role of core-corona effect (K. Werner et al. J.Phys.G36:064030,2009)^{Pt}

- **After checking successfully hundreds of particle spectra in AuAu**
	- Event-by-event analysis

Event-by-Event Energy Density : AuAu

- Bumpy structure of energy density in transverse plane, but translational \rightarrow invariance
	- pseudorapidity extension of flux tubes۰

Event-by-Event Radial Flow : AuAu

Leads to translational invariance of transverse flows

give the same collective push to particles produced at different values of η_s $\overline{}$ at the same azimuthal angle

pp@7 TeV : no Hydro

Calculation without hydro => NO RIDGE

hydrodynamical evolution "makes" the effect! HOW?

Event-by-Event Energy Density : pp

- Random azimuthal asymmetries of initial energy density but translationally \Rightarrow invariant
	- pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different $\boldsymbol{\mathsf{p}}_{_{\mathrm{S}}}$

Event-by-Event Energy Density : pp

- Random azimuthal asymmetries of initial energy density but translationally \Rightarrow invariant
	- pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different $\boldsymbol{\mathsf{p}}_{_{\mathrm{S}}}$

Event-by-Event Energy Density : pp

- Random azimuthal asymmetries of initial energy density but translationally invariant
	- pseudorapidity extension of flux tubes

Initial energy density in the transverse plane for two different $\boldsymbol{\mathsf{p}}_{_{\mathrm{S}}}$

Event-by-Event Radial Flow : pp

Elliptical initial shapes leads to asymmetric flows as well translationally invariant (in $\eta_{_\mathrm{s}}$)

Radial flow velocity at a later time in the transverse plane

Summary Ridge in pp

- **Translational invariance of the flow asymmetry means:**
	- \rightarrow The system gives an increased collective push
	- \rightarrow to particles produced at different values of η s
	- \rightarrow at the same azimuthal angle corresponding to a flow maximum

ΔηΔφ correlation

Pseudorapidity Distribution

Little effect of hydro in MinBias dn/deta

Multiplicity Distribution

Little effect of hydro in MinBias dn/deta

Pt Distribution

Big effect for Pt distributions for high multiplicity events (here 900 GeV)

<p^t > vs multiplicity ap-p@1.8 TeV : EPOS 2

Using small flux tube size

- **► Very good description of CDF data**
- No additional parameter
- Hadron mass dependence

Radius of Particle Emission

Space-time structure strongly affected (here 900 GeV)

Bose-Einstein Correlations

EXECONSEQUENCES for Bose-Einstein correlations

ALICE data. Radii R from exponential fit. KT1= [100, 250], KT3= [400, 550], KT5= [700, 1000]

jets in PbPb @ LHC

Holmganga – June 2023 **T. Pierog, KIT - 49/9**

Remnants in EPOS

In EPOS : any possible quark/diquark transfer

- Diquark transfer between string ends and remnants
- Baryon number can be removed from nucleon remnant :
	- ◆ Baryon stopping
- Baryon number can be added to pion/kaon remnant :
	- Baryon acceleration

Properties of Free Remnants

- **Valence quark not necessarily connected to parton ladder :**
	- Necessary to have $aΩ/Ω < 1$ (NA49 data)
	- Very broad remnant distribution
	- Can be used to describe effective enhanced diagrams (higher mass)
	- Very important for Cosmic Ray (leading particle)

