# Future e+e- electroweak measurements : W-pair threshold lineshape

Paolo Azzurri – INFN Pisa

ECFA WG1-PREC MiniWorkshop on Cross Section Lineshapes April 14, 2023

### The WW threshold lineshape and the W mass





only v. exchange (Gentle)

2 200

180

160

ALEPH <u>Phys.Lett.B 401 (1997) 347</u> with 10/pb  $m_W = 80.14 \pm 0.34$  GeV  $\triangleleft$  stat extrapolation to 10/ab  $\implies \Delta m_W = 0.34$  MeV

14/4/23 - ECFA WG1-PREC - cross section lineshapes

P.Azzurri - WW lineshape

### The WW threshold : W mass uncertainties

$$\sigma = \left(\frac{N}{L} - \sigma_B\right) \frac{1}{\varepsilon} \qquad \Delta m_W(stat) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \frac{\sqrt{\sigma}}{\sqrt{L}} \frac{1}{\sqrt{\varepsilon p}} \qquad \text{Statistical}$$

$$\Delta \sigma_{WW} = \frac{\Delta \sigma_B}{\varepsilon}$$

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\sigma_B}{\varepsilon} \oplus \Delta\sigma_{TH}\right)$$

Background and Theory

$$\Delta \sigma_{WW} = \sigma \left( \frac{\Delta \varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L} \right)$$

$$\Delta m_{W}(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_{W}}\right)^{-1} \left(\frac{\Delta\varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

Acceptance and Luminosity

$$\Delta m_W(E) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E \qquad C$$

Collision energy

### The WW threshold W mass : beam energy



$$\Delta m_W(E) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E$$

Uncertainty on beam energy  $\Delta E_b = \frac{1}{2}\Delta E$ translates directly to m<sub>w</sub>

$$\Delta E_b \cong \Delta m_W$$

Very limited variations of the  $dm_W/dE$  coefficient with  $E_{CM}$  in the threshold region

### The WW threshold : W mass optimal $E_{CM}$



### WW threshold : W mass precision requirements

Conditions to achieve  $\Delta m_W(syst) < \Delta m_W(stat) = 0.3$  MeV with a single point WW threshold measurement

$$\Delta m_W(B) = \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\sigma_B}{\varepsilon} \oplus \Delta\sigma_{TH}\right)$$

Background and Theory

 $\Delta \sigma_{TH} < 1 \text{fb} \quad (\Delta \sigma_{TH} / \sigma_{TH} < 2 \cdot 10^{-4})$  $\Delta \sigma_B / \varepsilon < 1 \text{fb} \quad (\Delta \sigma_B / \sigma_B < 4 \cdot 10^{-3})$ 

$$\Delta m_W(\varepsilon) = \sigma \left(\frac{d\sigma}{dm_W}\right)^{-1} \left(\frac{\Delta\varepsilon}{\varepsilon} + \frac{\Delta L}{L}\right)$$

Acceptance and Luminosity

$$\left(\frac{\Delta\varepsilon}{\varepsilon} \oplus \frac{\Delta L}{L}\right) < 2 \cdot 10^{-4}$$

$$\Delta m_{\scriptscriptstyle W}(E) = \left(\frac{d\sigma}{dm_{\scriptscriptstyle W}}\right)^{-1} \left(\frac{d\sigma}{dE}\right) \Delta E \le \frac{1}{2} \Delta E$$

Collision energy  $\Delta E_b <$ 

 $\Delta E_b < 0.3 \ MeV \ (\Delta E_b / E_b < 4 \cdot 10^{-6})$ 

### The WW threshold : background



### WW threshold : acceptance syst

### Syst unc at higher E\_CM (207 GeV) on $\sigma_{ m WW}$ (~16pb)

| Source                                | uncertainty (fb)  |                |      | )     |
|---------------------------------------|-------------------|----------------|------|-------|
|                                       | $\ell  u \ell  u$ | $\ell \nu q q$ | qqqq | total |
| Tracking                              | 4                 | 19             | 31   | 5     |
| Simulation of calorimeters            | -                 | 9              | 26   | 31    |
| Hadromation models                    | -                 | 27             | 8    | 00    |
| $Z$ peak q $\bar{q}$ fragmentation    | -                 | -              | 20   | 20    |
| Inter W final state interaction       | -                 | -              | 28   | 28    |
| Background contamination              | 9                 | 5              | 31   | 35    |
| Lepton identification                 | 1                 | 2              | -    | 3     |
| Beam-related background               | 10                | 17             | 37   | 22    |
| $\mathcal{O}(\alpha)$ corrections DPA | 2                 | 9              | 12   | 6     |
| Luminosity                            | 8                 | 35             | 44   | 87    |
| Simulation statistics                 | 6                 | 20             | 14   | 25    |
| Total                                 | 17                | 57             | 87   | 126   |

#### $\sigma_{\rm WW}^{q\bar{q}q\bar{q}}$ (pb) $\sigma_{\rm WW}^{q\bar{q}l\nu}$ (pb) $\sigma_{\rm WW}^{l\nu l\nu}$ (pb) Source Four-jet modelling $\pm 0.051$ $\pm 0.014$ Background cross-sections $\pm 0.006$ +0.009 $\pm 0.016$ Fragmentation $\pm 0.045$ $\pm 0.038$ Final state interactions $\pm 0.025$ Radiative corrections $\pm 0.002$ T0.000 ±0.008 Luminosity (theor) $\pm 0.002$ $\pm 0.011$ $\pm 0.010$ Luzinosity (exp) $\pm 0.045$ $\pm 0.043$ $\pm 0.011$ Detector effects $\pm 0.033$ $\pm 0.045$ $\pm 0.053$ Monte Carlo statistics $\pm 0.033$ $\pm 0.005$ $\pm 0.014$

DELPHI Eur.Phys.J.C 34 (2004) 127

can roughly scale/4 for equivalent

 $\varepsilon$  effects at threshold  $\sigma_{WW}$  (~4pb)

impacts on both qqqq and qq $\ell v$ 

**NP QCD effects** have important

need improvements in fragmentation and hadronization modeling plus constraints from control data ( $Z \rightarrow qq$ )

less worrisome than using jet properties for kin reco

ALEPH Eur.Phys.J.C 38 (2004) 147

target : bring table items below 4fb(/4=1fb)

| $\sqrt{s} \; (\text{GeV})$ | L (fb <sup>-1</sup> ) | $\int f$ | $\mid \lambda_{ m e^-}\lambda_{ m e^+}$ | $N_{ll}$ | $N_{lh}$ | $N_{hh}$ | $N_{RR}$ |
|----------------------------|-----------------------|----------|-----------------------------------------|----------|----------|----------|----------|
| 160.6                      | 4.348                 | 0.7789   | -+                                      | 2752     | 11279    | 12321    | 926968   |
|                            |                       | 0.1704   | +-                                      | 20       | 67       | 158      | 139932   |
|                            |                       | 0.0254   | ++                                      | 2        | 19       | 27       | 6661     |
|                            |                       | 0.0254   |                                         | 21       | 100      | 102      | 8455     |
| 161.2                      | 21.739                | 0.7789   | -+                                      | 16096    | 67610    | 73538    | 4635245  |
|                            |                       | 0.1704   | +-                                      | 98       | 354      | 820      | 697141   |
|                            |                       | 0.0254   | ++                                      | 37       | 134      | 130      | 33202    |
|                            |                       | 0.0254   |                                         | 145      | 574      | 622      | 42832    |
| 161.4                      | 21.739                | 0.7789   | -+                                      | 17334    | 72012    | 77991    | 4639495  |
|                            |                       | 0.1704   | +-                                      | 100      | 376      | 770      | 697459   |
|                            |                       | 0.0254   | ++                                      | 28       | 104      | 133      | 33556    |
|                            |                       | 0.0254   |                                         | 135      | 553      | 661      | 42979    |
| 161.6                      | 21.739                | 0.7789   | -+                                      | 18364    | 76393    | 82169    | 4636591  |
|                            |                       | 0.1704   | +-                                      | 81       | 369      | 803      | 697851   |
|                            |                       | 0.0254   | ++                                      | 43       | 135      | 174      | 33271    |
|                            |                       | 0.0254   |                                         | 146      | 618      | 681      | 42689    |
| 162.2                      | 4.348                 | 0.7789   | -+                                      | 4159     | 17814    | 19145    | 927793   |
|                            |                       | 0.1704   | +-                                      | 16       | 62       | 173      | 138837   |
|                            |                       | 0.0254   | ++                                      | 10       | 28       | 43       | 6633     |
|                            |                       | 0.0254   |                                         | 46       | 135      | 141      | 8463     |
| 170.0                      | 26.087                | 0.7789   | -+                                      | 63621    | 264869   | 270577   | 5560286  |
|                            |                       | 0.1704   | +-                                      | 244      | 957      | 1447     | 838233   |
|                            |                       | 0.0254   | ++                                      | 106      | 451      | 466      | 40196    |
|                            |                       | 0.0254   |                                         | 508      | 2215     | 2282     | 50979    |

Table 1: Illustrative example of the numbers of events in each channel for the standard  $100 \text{ fb}^{-1}$  6-point ILC scan with 4 helicity configurations. Columns give the center-ofmass energy,  $\sqrt{s}$ , the apportioned integrated luminosity, the fraction for each helicity configuration,  $\lambda_{e^-}\lambda_{e^+}$ , and the numbers of events observed in each channel.

 $\Delta m_W(\text{MeV}) = 2.4 \text{ (stat)} \oplus 3.1 \text{ (syst)} \oplus 0.8 \text{ (}\sqrt{\text{s})} \oplus \text{theory}$ 

### fitted $\Delta \varepsilon \sim 10^{-3}$ and $\Delta \sigma_B \sim 6$ fb additional impact of pol uncertainty

#### 14/4/23 - ECFA WG1-PREC - cross section lineshapes

### WW threshold @ ILC

arXiv:1603.06016 & arXiv:1908.11299

### **ILC polarised collisions** : enhance (x4) t-channel WW production or suppress it to control background

| Channel | Efficiency $(\%)$ | $\sigma^U_{ m bkgd}$ (fb) | $A^B_{ m LR}$ | Eff. syst. (%) | Bkgd syst. | $A_{\rm LR}^B$ syst. |
|---------|-------------------|---------------------------|---------------|----------------|------------|----------------------|
| lvlv    | 87.5              | 10                        | 0.15          | 0.1            | free       | 0.025                |
| qqlv    | 87.5              | 40                        | 0.30          | 0.1            | free       | 0.012                |
| qqqq    | 83.5              | 200                       | 0.48          | 0.1            | free       | 0.005                |

Table 3: Experimental assumptions for the WW event selection near threshold using a polarized scan

| Fit type                  | Uncertainty source | $\Delta M_W \; [{ m MeV}]$ | $\Delta M_W$ (syst.) [MeV] |
|---------------------------|--------------------|----------------------------|----------------------------|
| fixbkg                    | Background         | 3.20                       | 2.30                       |
| fixpol                    | Polarization       | 3.73                       | 1.27                       |
| fixeff                    | Efficiency         | 3.86                       | 1.18                       |
| fixlum                    | Luminosity         | 3.76                       | 0.78                       |
| fixALRB                   | $A^B_{ m LR}$      | 3.86                       | 0.80                       |
| fixall                    | Statistical        | 2.43                       |                            |
|                           | Systematic         |                            | 3.10                       |
| $\operatorname{standard}$ | Total Error        | 3.94                       |                            |

#### with 100 fb-1





With cross section  $\sigma_1 \sigma_2$  measurements at two energies  $E_1 E_2$ : uncertainty propagation

$$\begin{cases} \sigma_1 = \sigma_{WW}(E_1, m_W, \Gamma_W) \\ \sigma_2 = \sigma_{WW}(E_2, m_W, \Gamma_W) \end{cases} \begin{cases} \Delta \sigma_1 = a_1 \Delta m + b_1 \Delta \Gamma \\ \Delta \sigma_2 = a_2 \Delta m + b_2 \Delta \Gamma \end{cases} a_1 = \frac{d\sigma_1}{dm} \qquad b_1 = \frac{d\sigma_1}{d\Gamma} \\ a_2 = \frac{d\sigma_2}{dm} \qquad b_2 = \frac{d\sigma_2}{d\Gamma} \end{cases}$$

$$\Delta m = -\frac{b_2 \Delta \sigma_1 - b_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2} \qquad \Delta \Gamma = \frac{a_2 \Delta \sigma_1 - a_1 \Delta \sigma_2}{a_2 b_1 - a_1 b_2}$$

 $\Delta m, \Delta \Gamma$  linear correlation with uncorrelated  $\Delta \sigma_1, \Delta \sigma_2$ 

$$r = -\frac{1}{\Delta m \Delta \Gamma} \frac{a_2 b_2 \Delta \sigma_1^2 + a_1 b_1 \Delta \sigma_2^2}{(a_2 b_1 - a_1 b_2)^2}$$

Scans of possible E<sub>1</sub> E<sub>2</sub> data taking energies and luminosity fractions f (at the E<sub>2</sub> point)



Δm<sub>w</sub>=0.45 MeV , ΔΓ<sub>w</sub>=1 MeV (r=-0.6) Δm<sub>w</sub>=0.35 MeV

14/4/23 - ECFA WG1-PREC - cross section lineshapes

 $\Delta m_W$ : error on W mass from fitting only  $m_W$ 



Scans of (E<sub>1</sub>, E<sub>2</sub>, f) data taking **assuming limiting** syst uncertainties, either  $\Delta \varepsilon + \Delta L$  or  $\Delta \sigma_{B} + \Delta \sigma_{TH}$ 

More complex situation, depends very much on the correlation of uncertainties between the energy points (that can be quite large)

Correlated syst can cancel taking data at different  $E_{CM}$  points where the relevant differential factors are equal (around their minima)

>2 energy points will be beneficial to reduce the impact of (correlated) systematic uncertainties careful choice of additional points recommended

partially explored in Eur. Phys. J. C 80 no. 1, (2020) 66

### WW threshold : energy spread effects



Maximum effects are at the level of  $\Delta m_w$ (stat) and  $2x \Delta \Gamma_w$  (stat) so that control on the beam energy **RMS** <**50%** is required to avoid additional syst contributions from this source

arXiv:1909.12245





On the way to the electron-Yukawa (with  $ee \rightarrow H$ )

Optimal data-taking point for min  $\Delta m_{\rm H}({\rm stat})$ Is E<sub>CM</sub>≃m<sub>7</sub>+m<sub>H</sub>+0.6~ **217 GeV** 

220 √s (GeV)

 $V\sigma_{ZH}(dm_H/d\sigma_{ZH})_{min}=350 \text{ MeV/Vfb}$ 

With  $5/ab \Rightarrow \Delta m_{H}(stat) = 5 \text{ MeV}$ Not including  $Q=\sqrt{\Sigma}\varepsilon_i p_i$  (over all channels)

 $(dm_{\rm H}/d\sigma_{7\rm H})=40$  MeV/fb

### interlude : the ZH threshold



### need syst control on :

- ΔE(beam)<5 MeV (**5x10**-5)
- Δε/ε, ΔL/L < **10**-3
- $\Delta \sigma_{\rm B} < 0.1 \, {\rm fb}$  (  $\sim 10^{-3}$ )

Taking some /ab at  $E_{CM} \approx 214-215 \text{GeV}$  (off shell) would allow  $\Delta \Gamma_{H} \approx 40 \text{ MeV}$ 

 $\Rightarrow$  not very interesting



### work ahead

- Explore in more detail the systematic uncertainties (cancellation) effects with multi-point (n≥3) cross section measurements. Evaluate benefits of additional model independence.
  - reduction / cancellation of acceptance & luminosity systs is of particular interest
- Design a realistic a modern analysis with event classifiers, evaluate performances and the corresponding **impact of systematic uncertainties.** Feedback to theory and detector design.
- Explore BSM/EFT interest and utility of multi-point precision  $\sigma_{\rm WW}$  measurements at threshold, also with other 4f productions (We $\nu$ , Zee, ..)
- Sensitivity to  $\sin^2 \theta_{\rm W}$  with total  $\sigma_{\rm WW}$  at higher energies (>200 GeV)

### Summary

- WW lineshape data can provide both  $m_W$  and  $\Gamma_W$  with unprecedented precision
  - optimal data taking at  $E_{CM}$ = 2m<sub>w</sub>+1.5 GeV ( $\Gamma_W$ -insensitive) and  $E_{CM}$ =2m<sub>w</sub>-  $\Gamma_W$ (off shell) yileds with 12/ab stat precision  $\Delta m_W$ =0.5 MeV and  $\Delta \Gamma_W$ =1.2 MeV, some challenges from syst uncertainties (acceptance control at few 10<sup>-4</sup> level )
  - interest of additional  $E_{\text{CM}}$  points for syst control and investigate other lineshape properties
  - threshold data can be used for other measurements as direct  $N_{\nu}$  from radiative Z, single V (We $\nu$ , Zee), ...