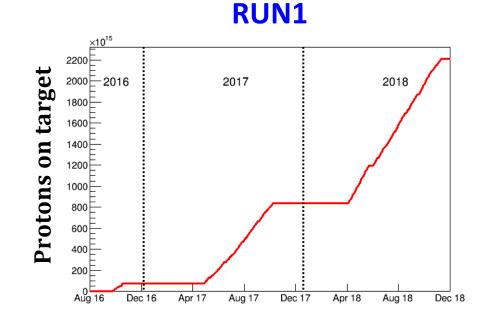
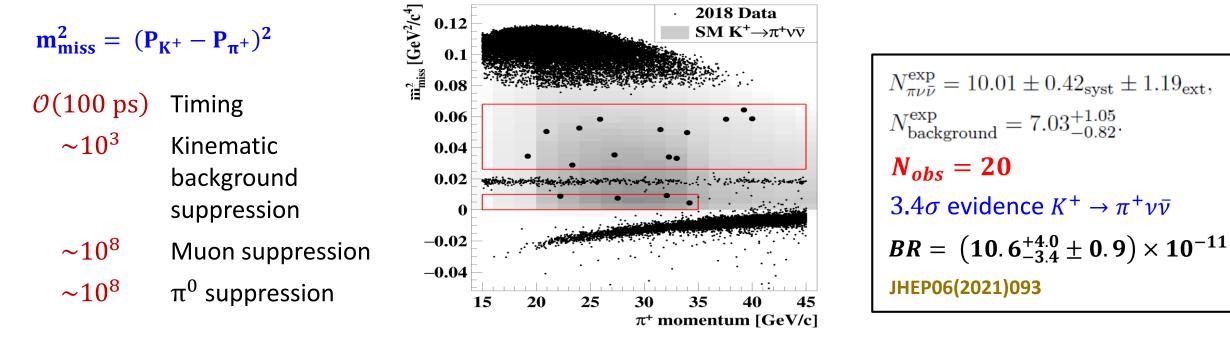


Status and Plans of the NA62 Experiment


Giuseppe Ruggiero (University of Firenze & INFN) SPSC Open Session 10/05/2023

The NA62 Experiment

- Designed to study $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- 10^{-11} Sensitivity to single π^+ events
- K and π tracking; timing; PID; calorimetry
- Broad Kaon physics program: precision measurements & searches
- Dump physics



PoT $\sim 2.2 \times 10^{18}$ recorded

Intensity:

2018: 65% nominal 2017: 50% nominal 2016: 40% nominal

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ from RUN1

"Random Veto"

Probability of signal loss when rejecting photons Loss due to random veto induced by accidental activity

"Upstream" background

K⁺ decays upstream

Problem: lack of vetoes along the beam line

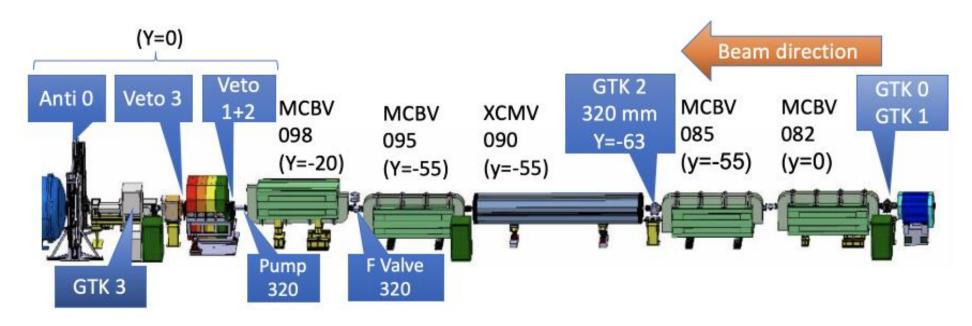
Run2: ≥ **2021**

RUN 2

NA62 recommended by SPSC and approved from research board until LS3 (CERN-DG-RB-2021-505)

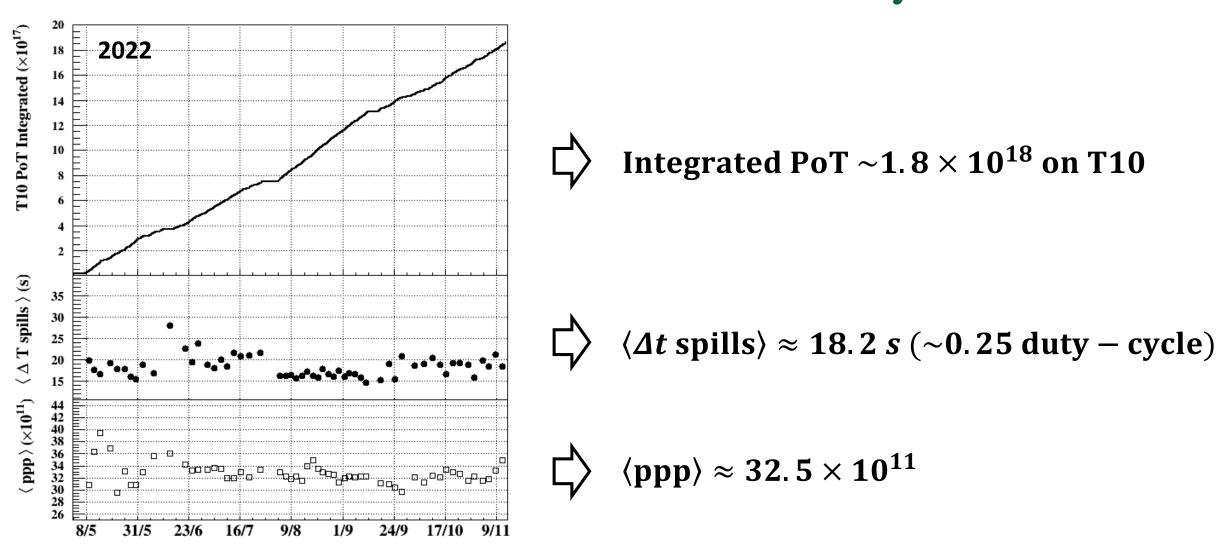
Main Goal: measurement of $BR(K^+ \rightarrow \pi^+ \nu \overline{\nu})$ (Addendum I to P326 SPSC-2019-039)

Requirements:

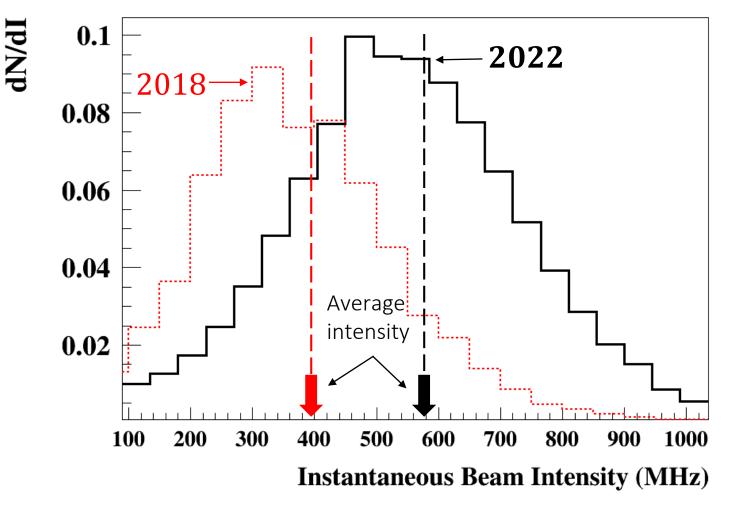

- Run at nominal intensity ($\sim 33 \times 10^{11}$ ppp on T10)
- Control upstream background
- Mitigate effect of random veto
- Optimize the $K^+
 ightarrow \pi^+ \nu \overline{
 u}$ analysis to increase signal acceptance

New institutions have joined NA62 in 2022/2023

 Max Planck Institute Munich, Aix Marseille University, Ecole polytechnique federale de Lausanne, Institute of Nuclear Physics (Almaty - Kazakhstan)


RUN 2 New Hardware

GTK0: 4 th station of Gigatracker to improve kaon reconstruction efficiency	2021
Veto Counter: veto of K decays occurring upstream	2021
AntiO: veto "accidental" muons to improve background rejection in dump mode	2021
HASC2 (not in figure): improve photon rejection at small angles	2021
(CEDAR - H) (not in figure): reduce material along the beam line	2023 New

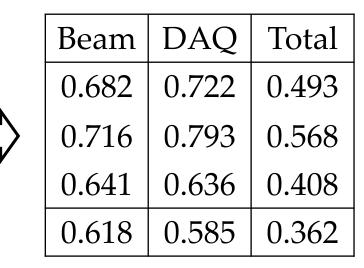


2022 Run

2022 Delivered "Luminosity"

2022 Observed Intensity (Rate at GTK)

Absolute average rate at GTK in 2022 580 MHz


Intensity increase vs 2018: \times 1.45

N.B.

Effective spill length $\sim 4s$ (2022, 2018) Rate at GTK corresponds to 750 MHz at 3s effective spill (P326 proposal)

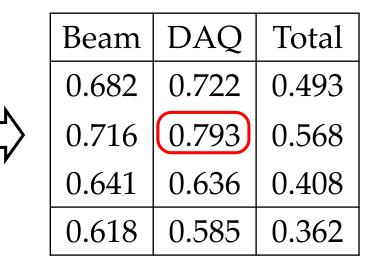
2022 NA62 Data Taking Efficiency

Period	Τ4	T10	NA62	Trigger
2022	0.753	0.906	0.844	0.856
2022 (> 10/08)	0.775	0.924	0.877	0.904
$2022 \ (< 10/08)$	0.726	0.883	0.800	0.795
2021	0.710	0.871	0.800	0.731

T4: (# spills with beam on T4) / (# expected spills)

T10: (# spills with beam on T4 and T10) / (# spills with beam on T4)

NA62: (# spills written on disk) / (# spills with beam on T4 and T10)


Trigger: (# events written on disk) / (< # events > that should have been written given the intensity)

DAQ: NA62 x Trigger

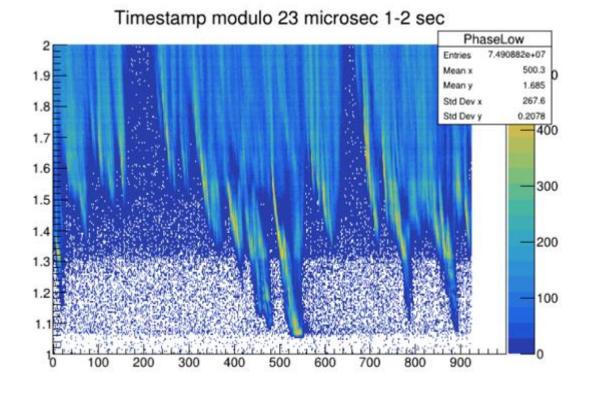
Total: T4 x T10 x NA62 x Trigger

2022 NA62 Data Taking Efficiency

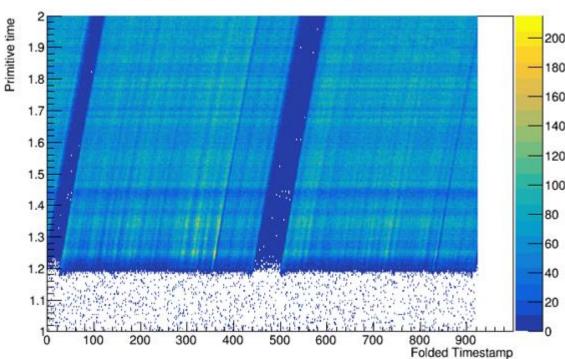
Period	Τ4	T10	NA62	Trigger
2022	0.753	0.906	0.844	0.856
2022 (> 10/08)	0.775	0.924	0.877	0.904
$2022 \ (< 10/08)$	0.726	0.883	0.800	0.795
2021	0.710	0.871	0.800	0.731

Significant improvements vs 2021 and during 2022

- □ Spill quality fixed in 2022
- □ GTK readout instabilities fixed 10/08 (optical splitter)


DAQ efficiency in 2018 ~ 0.8

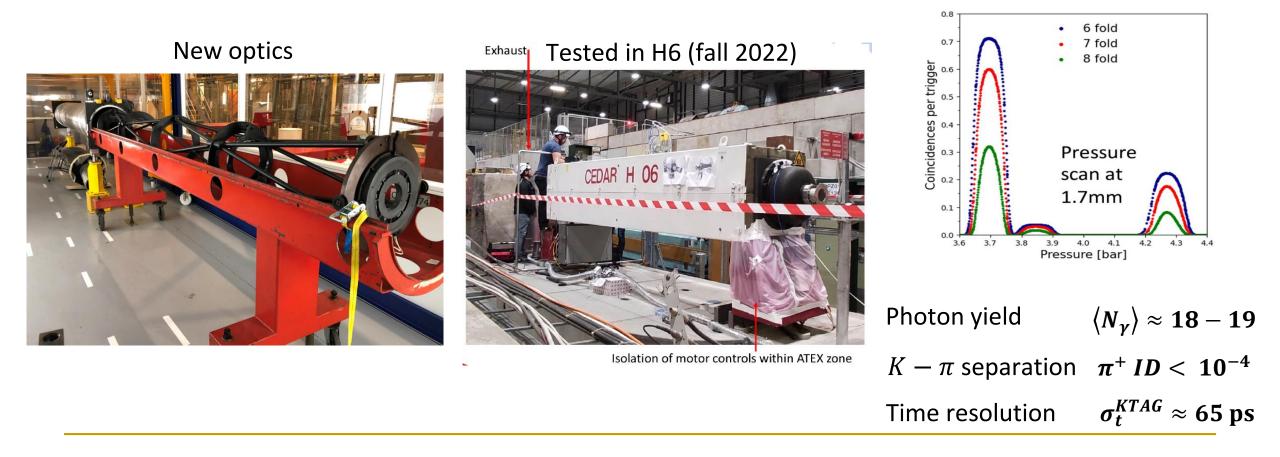
 \Rightarrow From 10/08 onwards NA62 data taking in line with 2018


2022 Spill Quality

Intensity "bump" in 1st second (× 8 intensity) in 2021 fixed in 2022 - We thank the BE-OP, SY-RF groups

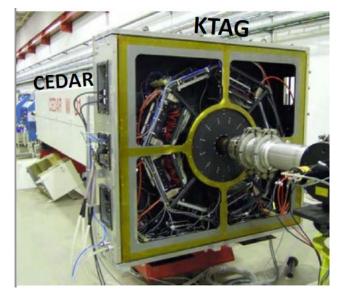
2021

2022


Timestamp modulo 23 microsec 1-2 sec

Preparation of the 2023 Run

CEDAR - H

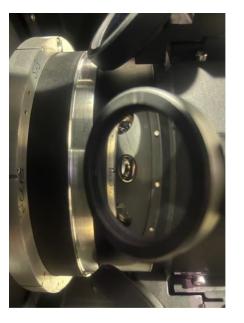

Reduction of material budget in the beamline: N₂ 3.9% X₀ vs H₂ 0.7% X₀

Expected 15% reduction rate at LO, Lower occupancy of detectors (to be quantified)

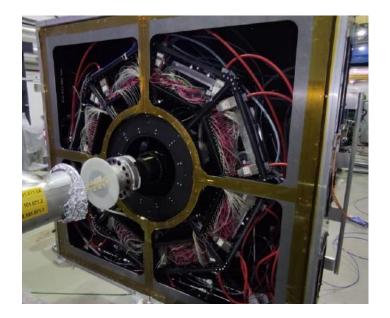
CEDAR - H

KTAG dismantled from CEDAR-W

CEDAR-W removed from K12



CEDAR-H installed in K12


CEDAR - H

New spherical mirrors KTAG frame reassembled

Light box installed

Cabled

Installation completed beginning of March – readout tested Commissioning of detector for work with Hydrogen – March / April *We thank all the groups and people at CERN involved in this project*

L0TP+

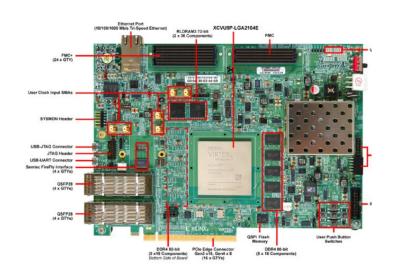
New L0 trigger processor board to replace the board in operation since 2015

Goal:

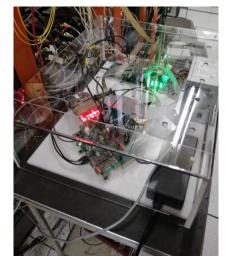
- Increase output bandwith
- More flexibility for different trigger algorithms

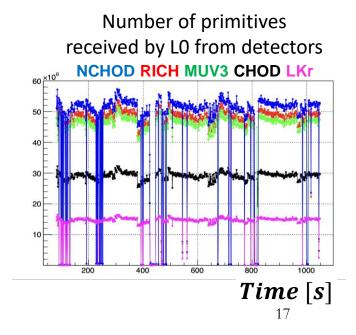
Requirements:

- □ Last generation FPGA; Larger on-chip memory
- PCI Express interface; FMC expansion slots
- Last generation high speed channel interfaces

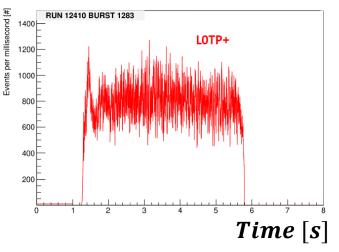

Technical solution: commodity device (Xilinx VCU118)

Project timeline:


2019 – 20 design and build of the board


2021 – 22 test in parallel to LOTP, NA62 integration

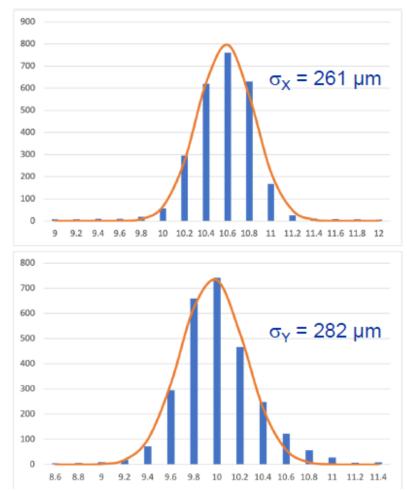
2023 commissioned and fully operational



Board installed at NA62

Burst profile

Beam Preparation and Tuning


Re-alignment of the P42 beam line Removal of not used beam line elements Removal of a badly mis-aligned vacuum chamber after T4 Installation of addition beam instrumentation

Beam tuning completed before official start of data taking

Standard magnification (0.5 - 1) (lower in 2021-2022)Beam spot at T10 as expected (larger in 2021-2022)20% reduction of protons on T4 for the same intensity in K12

We thank the BE-EA group and all the people involved

Beam profile at T10 - 2023

Plans for RUN 2023

25-30% shorter than 2022 due to energy saving measures

□ 150 days nominal (modulus duty – cycle)

Kaon Physics

- $\Box \quad K^+ \rightarrow \pi^+ \nu \overline{\nu} \text{ at nominal intensity}$
- □ Rare trigger and tagged neutrino trigger lines in parallel
- **D** Possibility to optimize downscaling of non $\pi\nu\nu$ triggers (Hydrogen + LOTP+)
- **\Box** Short runs at lower intensity (65%, 80%) for $\pi\nu\nu$ if needed (to be planned)

Dump

- □ 1 week (+ contingency)
- \Box × 1.5 nominal intensity
- □ 2021-configuration: tax closed, target removed, muon sweepers on

Computing, Software

Main upgrades

Improved online software for faster online monitoring (run 2022)

New farm PCs (run 2023)

- Increase of EOS space: 1 Pbyte / year
 - **•** We thank IT Department for the support

Multi – threads reconstruction

□ Further speeding up of the online monitor expected (run 2023)

Simulation

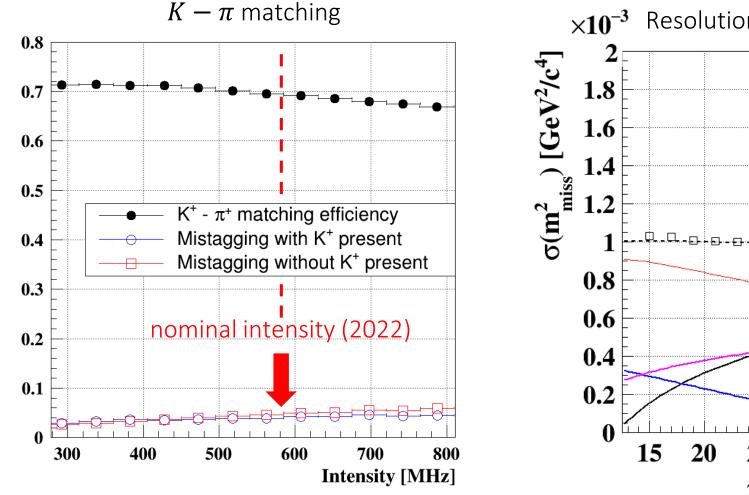
- □ Fast switching from RUN1 and RUN2 (21,22, >22) configurations
- **u** Tuning of the intensity templates / year to simulate accidentals with overlay technique
- Biasing methods to simulate rare events sources of background
- □ Migration to the recent GEANT4 v.11 release

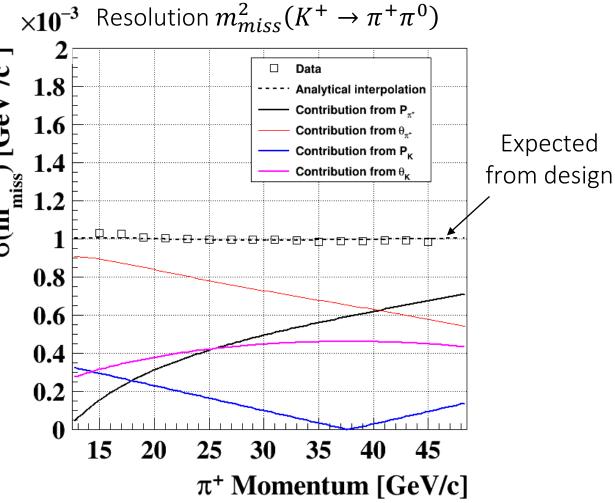
2022 Data Quality

Overview

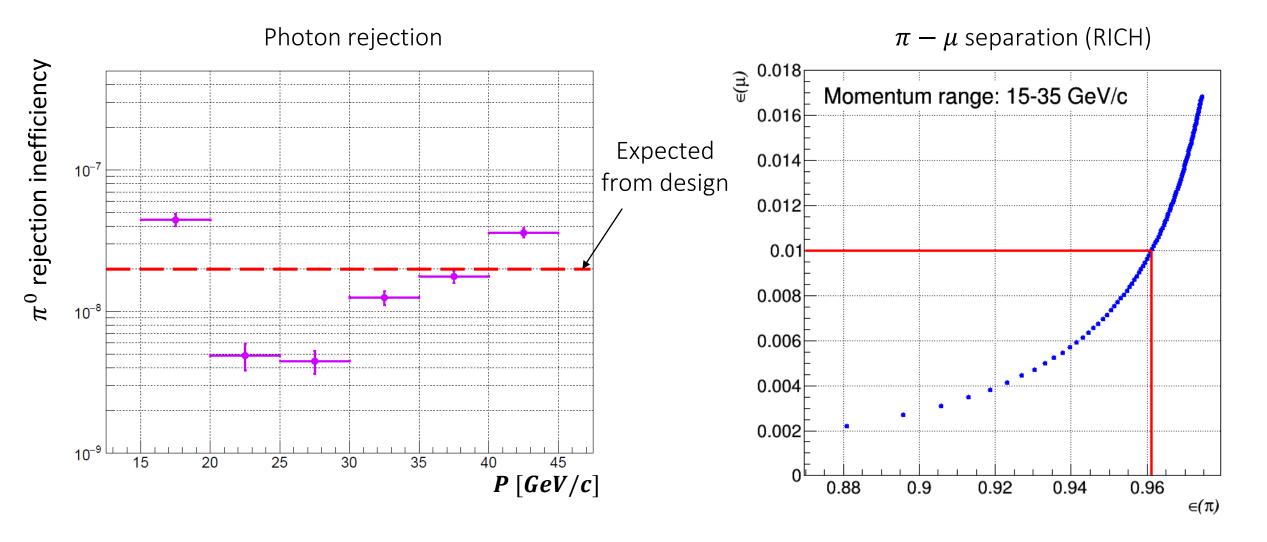
85% of data processed online in 2022 for monitoring and «express» analysis

100% of 2022 data reprocessed by March 2023


Burst collected: $\sim 403 \times 10^3$


«Bad» bursts for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis : $\sim 80 \times 10^3$

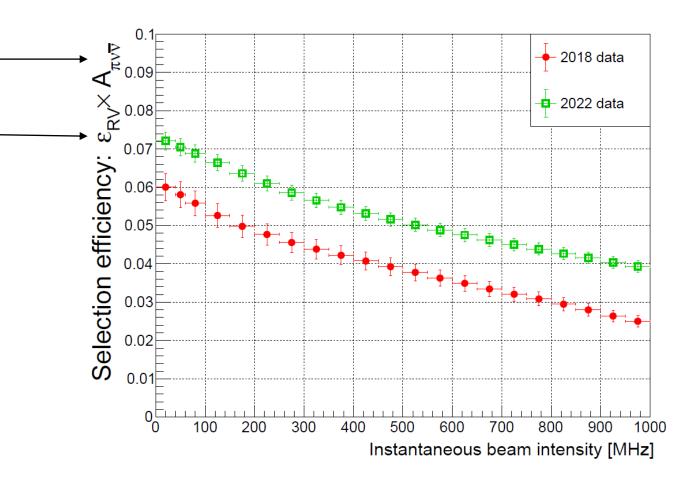
- □ Mostly from first period due to SAV problems
- □ Without first period **10**% rate of bad burst, consistent with 2017 and 2018 runs


Quality of data consistent with 2018

Kinematic Reconstruction

Photon Rejection and PID

Status of the $K^+ \to \pi^+ \nu \overline{\nu}$ analysis


Signal Efficiency

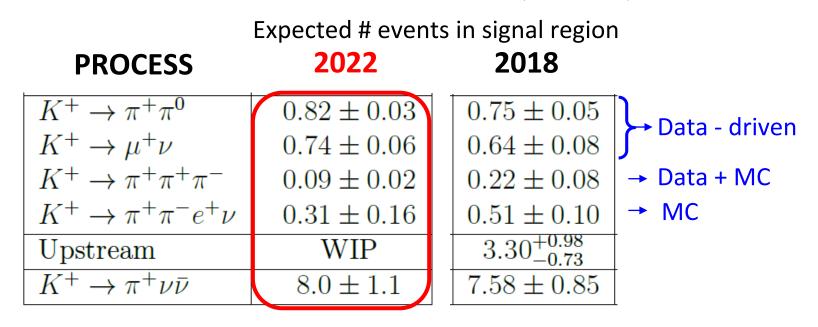
Selection optimization \rightarrow increase of signal selection acceptance vs 2018 (\times 1.2)

Improved random veto $\varepsilon_{RV} \rightarrow$ compensation of the effect from increased intensity vs 2018

Decrease of reconstruction efficiency vs 2018 due to intensity increase ($\times 0.95$)

Decrease of absolute trigger efficiency vs 2018 due to increased intensity ($\times 0.9$)

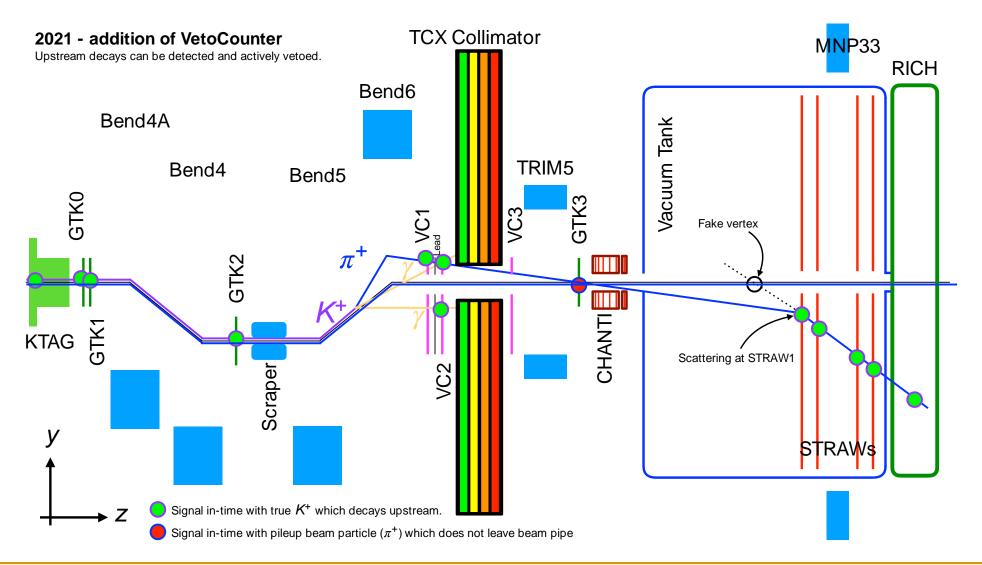
Background from Kaon Decays


e.g. $K^+ \rightarrow \pi^+ \pi^0$ data driven method

Normalization: background region

Extrapolation to signal region: Non-Gaussian tails of the m^2_{miss} resolution

Overall Status (2022)

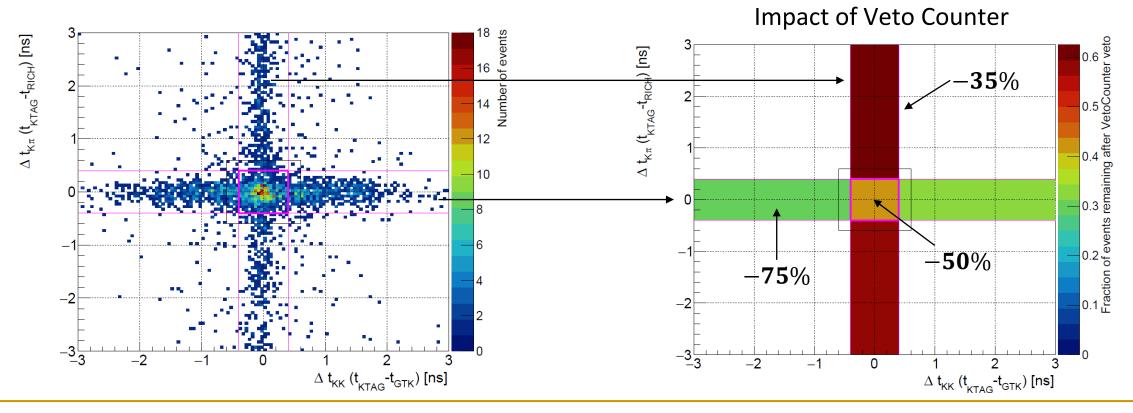

Normalization: $K^+ \rightarrow \pi^+ \pi^0$ from specific trigger (muon rejection in common with signal, no photon veto) Trigger efficiency ~0.9 (relative between normalization and signal, main effect from photon veto) Uncertainty # $\pi \nu \nu$: systematics from normalization/trigger + parametric uncertainty from SM branching ratio Signal / Kaon background = 4.0 ± 0.5 (3.6 ± 0.4 in 2018)

Selected Signal yield - Summary

	Year	Weeks	# bursts collected (10^3)	# good bursts (10 ³)	Beam intensity (vs nominal)	Expected PNN/good burst
	2022	29	403	320	100%	$0(2.5 \times 10^{-5})$
	2021	18	145	120	100%	work in progress
\int	2018	31	520	450	65%	1.7×10^{-5}
$\left \right $	2017	24	300	265	50%	0.8×10^{-5}
l	2016	8	84	67	40%	0.4×10^{-5}

~47% increase of $\pi \nu \nu$ / burst vs 2018: $1.45 \times 1.2 \times 0.95 \times 0.9 = 1.49$ Reconstruction Intensity Selection Trigger

Upstream Background


Upstream Background

Quadratic scaling with intensity increase expected: veto counter essential

Data – driven estimation; control regions from out – of – time regions and mis – reconstructed samples

Extrapolation in signal regions using PDFs for timing and mis-reconstruction probabilities

Overall procedure under review to include veto counter

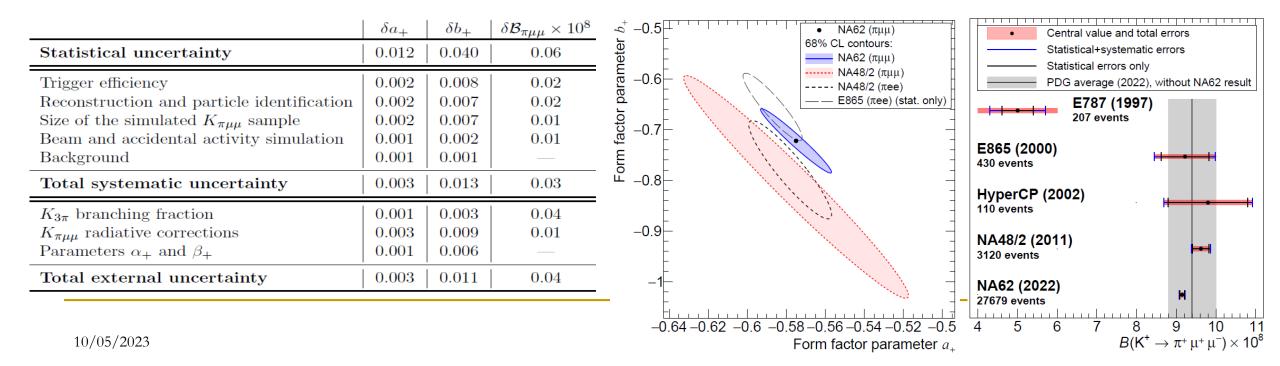
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Plans

- □ Analysis
 - Further optimization of the selection
 - Test and possible implementation of a new algorithm for PID based on NN
 - Study of the scaling of the upstream background with intensity
 - Full implementation of the veto counter
 - Evaluation procedure of the upstream background
 - Simulation studies of the upstream background
 - Include 2021 data
- Result
 - Release of a new result based on 2021+2022 data hopefully by end-2023

Selection of Physics Results from 2022

- **Precision measurements**: LFUV, Chiral parameters
- **NP direct search**: forbidden LNV, LFV kaon decays
- Feebly interacting particles searches

$K^+ \rightarrow \pi^+ l^+ l^-$ Precision measurement

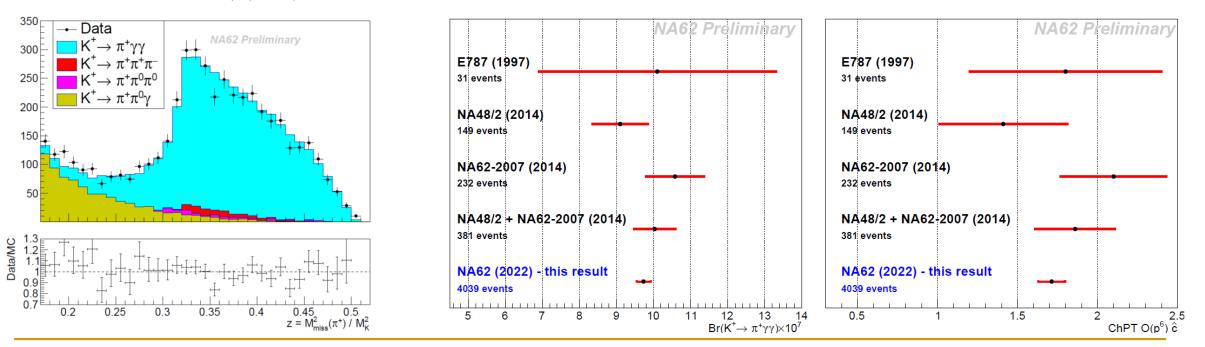

Form factors (FF)

Theory: $d\Gamma/dz \propto G_F M_K^2(a + bz) + W^{\pi\pi}(z)$ [$z = m(l^+l^-)^2/M_K^2$] Lepton universitality: same a, b for $l = e, \mu$

Goal: Measurement of FF and $BR(K^+ \rightarrow \pi^+ \mu^+ \mu^-)$

Analysis: Data RUN 1, almost background-free selection normalization $K^+ \rightarrow \pi^+ \pi^+ \pi^$ a, b from fit $d\Gamma/dz$

$N_{obs} = 27679$	JHEP11(2022)011
$a_+ = -0.575 \pm 0.013$	
$b_+ = -0.722 \pm 0.043$	
$BR(K^+ \to \pi^+ \mu^+ \mu^-) = (9)$	$9.15 \pm 0.08) \times 10^{-8}$

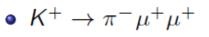

$K^+ \rightarrow \pi^+ \gamma \gamma$ Precision measurement

Theory: Test of Chiral Perturbation Theory, $d\Gamma/(dydz)$ depends on the chiral parameter \hat{c}

 $[z = m(\gamma\gamma)^2/M_K^2]$ $[y = p_K(p_{\gamma 1} - p_{\gamma 2})/M_K^2]$

Goal: Measurement of $BR(K^+ \rightarrow \pi^+ \gamma \gamma)$ and \hat{c}

Analysis: Data RUN 1, ~10% background normalization $K^+ \rightarrow \pi^+ \pi^0$ \hat{c} from $d\Gamma/(dydz)$ $\begin{array}{l} N_{obs} = 4039 \quad N_{bkg} = 393 \pm 20 & \text{KAON2022} \\ \hat{c} = \mathbf{1}.7\mathbf{13} \pm \mathbf{0}.\mathbf{075}_{stat} \pm \mathbf{0}.\mathbf{037}_{syst} \\ BR(K^+ \to \pi^+ \gamma \gamma) = \left(9.73 \pm \mathbf{0}.\mathbf{17}_{stat} \pm \mathbf{0}.\mathbf{08}_{syst}\right) \times \mathbf{10}^{-7} \end{array}$



LNV and LFV decays in RUN1

Theory: decays forbidden by SM because violate Lepton number and/or flavour direct search of NP: Majorana neutrino (LNV), Leptonguark (LFV)

NA62: Run1 data; several channels studied

Analysis: Most recent results (90% CL)

• $K^+ \rightarrow \mu^- \nu e^+ e^+$

•
$$K^+ \rightarrow \pi^- e^+ e^+$$

•
$$K^+ \rightarrow \pi^- \pi^0 e^+ e^+$$

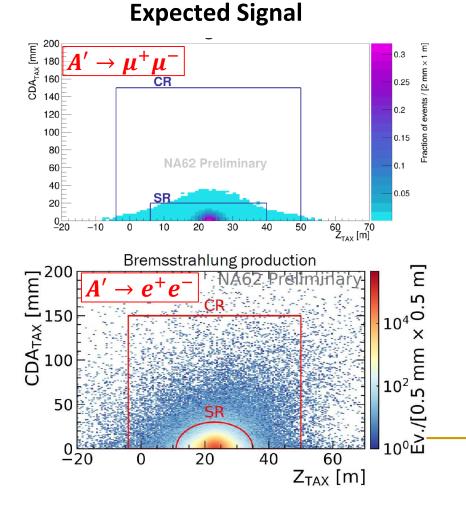
 $K^+
ightarrow \pi^- e^+ e^+$ (LNV)

•
$$K^+ \rightarrow \pi^{\mp} \mu^{\pm} e^+$$

•
$$\pi^0 \rightarrow \mu^- e^+$$

Events / (2 MeV/c²) 🗕 Data (4 MeV/c² K⁺→e⁺ve⁺e K⁺→π⁰_pe⁺ν $BR(K^+ \to \mu^- \nu e^+ e^+) < 8.1 \times 10^{-11}$ (× 4 better) $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ K⁺→π⁺π⁻e⁺v PLB838(2022)137679 Events 10² ⊧ $BR(K^+ \to \pi^- e^+ e^+) < 5.3 \times 10^{-11}$ (× 200 better) 10⁻¹ PLB830(2022)137172 10 $BR(K^+ \to \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-11}$ (first search) 10⁻² PLB830(2022)137172 10 300 350 400 450 500 550 250 450 500 550 200 300 350 400 $m(\pi^+e^+e^-)$ [MeV/c²]

 $K^+ \rightarrow \pi^+ e^+ e^-$ (SM allowed)

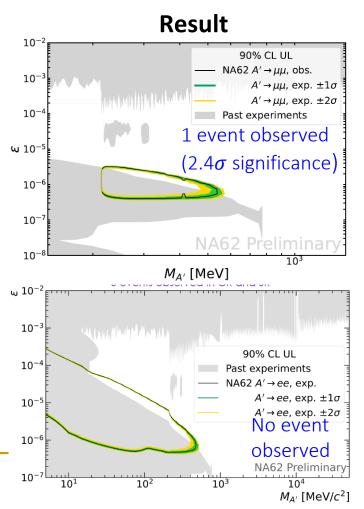

 $m(\pi^-e^+e^+)$ [MeV/c²]

Dark Photon Search $A' \rightarrow l^+l^-$ (RUN2)

Theory: SM extension in the framework of feebly interacting particle models (FIPs)

NA62: Data taken in dump mode in **2021,** exploitation of beam optimization and ANTIO

Analysis: 2 channels $\mu^+\mu^-$, e^+e^- ; reconstructed A' compatible with production in dump; blind procedure


Expected background

Random time superposition of two uncorrelated muons; data-driven estimation

 0.016 ± 0.002

Secondaries of particle's interactions with traversed material ("prompt"); MCdata estimation

```
0.0094<sup>+0.049</sup> @ 90% CL
```


 $|\rangle|$ (1.4 \pm 0.3) \times 10¹⁷ PoT

Conclusions

- Successfull run in 2022
 - NA62 runs in stable mode at full intensity
 - No evidence of loss of data taking efficiency compared to runs at lower intensity

• $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis:

- □ Improved compared to RUN1 analysis
- $\Box \sim +50\%$ increase of $\pi\nu\nu$ / burst compared to 2018
- □ Background from kaon decays in line with 2018, upstream background under study

• Other physics analysis:

- □ World-leading results published/released from precision, rare kaon, and dump physics
- Several new results expected mostly from RUN1 data

Selected $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ yield / «year» matches expectations of Addendum I to P326 SPSC-2019-039 New result on $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ expected by 2023

2023 run is starting with important hardware upgrades