Cosmology

Part 1: Fundamentals

Lot's of questions

What is the particle content of the universe?

What are the fundamental interactions at play?

How did galaxies form and evolve?

What were the initial conditions of the Universe?

Cosmology

Interdisciplinary field

Kinetic theory and statistical physics

Particle physics

Gravitational physics (e.g. General Relativity)

Quantum field theory

Numerical techniques (e.g. N-body simulations, ODE/PDE solving)

Astronomy

Astrophysics

Statistical techniques and data analysis

The Universe is expanding

Hubble law

$$H_0 = 100h \; \mathrm{km} \; \mathrm{s}^{-1} \; \mathrm{Mpc}^{-1}$$

$$\sim \frac{h}{10^{10} \mathrm{years}}$$

$$\sim 2 \times 10^{-42} h \; GeV$$

Data suggest $~h\sim 0.7$

Features:

- The Universe is expanding
- The observable patch of the Universe has a radius of $\sim 3000 Mpc$

$$1Mpc \simeq 3.26 \times 10^6 \text{years} \simeq 3.08 \times 10^{22} m \simeq 1.56 \times 10^{38} GeV^{-1}$$

- The Universe is statistically homogeneous and isotropic on scales larger than $\sim 100 Mpc$ with well-developed inhomogeneous structure (stars, galaxies, clusters, filaments) on smaller scales
- Gravity plays a fundamental role at all stages of the evolution of the Universe

- The Universe is full of thermal microwave radiation, $\bar{T}_{CMB} = 2.7255 K$
- The Universe contains baryonic matter, roughly 1 baryon per 10^9 photons, and very little anti-matter.

• Baryons contribute ~5%

Rest is: Cosmologica "Cosmologica

"Cosmological constant" (Da

(Dark energy)

Unit conventions

$$c = k_B = \hbar = 1$$

Speed of light

Boltzmann constant

Planck constant $/2\pi$

$$1GeV = 1.602 \times 10^{-10} J = 1.5637 \times 10^{38} Mpc^{-1}$$

Mass

$$1Kg = 5.6095 \times 10^{26} GeV = 8.7714 \times 10^{64} Mpc^{-1}$$

Temperature

$$1K = 8.61698 \times 10^{-14} GeV = 1.34744 \times 10^{25} Mpc^{-1}$$

Length

$$1m = 5.0677 \times 10^{15} GeV^{-1} = 3.2409 \times 10^{-23} Mpc$$

Time

$$1s = 1.51925 \times 10^{24} GeV^{-1} = 9.7160 \times 10^{-15} Mpc = 2.997925 \times 10^8 m$$

Cosmological Principle

In an average sense

Universe is homogeneous and isotropic on very large scales

Looks the same along any direction

Looks the same at each point

Cosmic Microwave Background

Ehlers-Geren-Sachs Theorem

Ehlers, J., Genen P. & Sachs R. K., J. Math. Phys. J. 9, 1344 (1968)

Almost Isotropy of CMB + Copernican principle (+ GR) ———— Almost Homogeneity

Stoeger W. R., Maartens R. & Ellis G. F. R., Astrophys. J. 443, 1 (1995)

Sloan Digital Sky survey

Copernican principle can be tested

e.g. Using WiggleZ data:

I. Morag et al, MNRAS 425, 116S (2012)

Approaches homogeneity at $\sim 80-100h^{-1}Mpc$

Describing a homogeneous-isotropic Universe

3D Euclidean space is homogeneous and isotropic

Pythagorean theorem measures distance (also infinitesimally): $d\ell^2 = dx^2 + dy^2 + dz^2$

Special relativity spacetime interval: $ds^2 = -dt^2 + dx^2 + dy^2 + dz^2$

Space is expanding — but is this means that space and time must be treated separately Can't do this respecting special relativity

Spatial part of 4D metric is expanding if $\dot{a}>0$

But how do we determine the scale factor?

General covariance: Physics does not depend on the coordinate system used to describe it

$$ds^{2} = -dt^{2} + a^{2}(t) \left[dx^{2} + dy^{2} + dz^{2} \right] \quad \longrightarrow \quad ds^{2} = -dt^{2} + a^{2}(t) \left[dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2} \right) \right]$$

Cartesian coordinates

Spherical coordinates

$$x^{\mu'} = \{t, r, \theta, \phi\}$$

$$dx^{\mu} = \frac{\partial x^{\mu}}{\partial x^{\mu'}} dx^{\mu'} \qquad g_{\mu\nu} = \frac{\partial x^{\mu'}}{\partial x^{\mu}} \frac{\partial x^{\nu'}}{\partial x^{\nu}} g_{\mu'\nu'}$$

Geometric objects transforming like this are called "Tensors"

Einstein summation convention: repeated indices summed over

$$\sum_{\mu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu \equiv g_{\mu\nu} dx^\mu dx^\nu$$

$$\lim_{\mu=0} \sum_{\nu=0}^3 \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu = \lim_{\mu=0} \sum_{\nu=0}^3 g_{\mu\nu} dx^\mu dx^\nu$$
 Indices $\mu, \nu, \rho, \text{etc} = \{0 \dots 3\}$

General Relativity — Gravity as geometry of spacetime

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Metric tensor $g_{\mu\nu}(t,\vec{x})$ - 4x4 symmetric matrix (10 components) determined by Einstein equations

- Generally, not equivalent to Minkowski metric

$$\frac{\partial x^{\mu'}}{\partial x^{\mu}} \frac{\partial x^{\nu'}}{\partial x^{\nu}} g_{\mu'\nu'} \neq \eta_{\mu\nu}$$
 except in (sometimes) vacuum

- Is invertible:
$$g^{\mu\rho}g_{\rho\nu}=\delta^{\mu}_{\ \ \, }$$
 Baising/lowering of tensor indices ldentity matrix

$$v^{\mu} = g^{\mu\nu}v_{
u}$$
 $v_{\mu} = g_{\mu\nu}v^{
u}$

Conventionally $\,a=1\,$ Today

Scale factor – determined by matter content

$$ds^2 = -dt^2 + a^2 (t) \left[\frac{dr^2}{1 - \kappa r^2} + r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 \right) \right]$$
Spatial curvature

(Spherical coordinates)

$$\kappa > 0$$

Positively curved (e.g. 3-sphere)

Negatively curved (e.g. hyperbolic 3-space)

Physical vs co-moving distance — Back to Hubble law

$$r_{phys}=a\ r$$
 $v=\dot{r}_{phys}=\dot{a}\ r=H(t)r_{phys}$ Generalized Hubble law

$$H=\frac{\dot{a}}{a}$$
 Hubble parameter

$$H_0=H(t_0)$$
 Today

In the absence of forces, particle trajectories are geodesics

$$\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = 0$$

 $x^{\mu}(\lambda)$ Solution gives geodesic

Affine parameter

Christoffel symbols
$$\Gamma^{lpha}_{\mu
u}\equiv rac{1}{2}g^{lphaeta}\left(\partial_{\mu}g_{eta
u}+\partial_{
u}g_{eta\mu}-\partial_{eta}g_{\mu
u}
ight)$$

Subject to constraint:
$$g_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = L$$
 $L=0$ Null geodesics: massless particles $L=1$ Spacelike geodesics: no physical particles

Timelike geodesics: massive particles

 $\lambda \to s$

$$L = 0$$

$$L=1$$

Spacelike geodesics: no physical particles $\lambda \to s$

Energy of massless particles

$$\frac{dx^{\mu}}{d\lambda} = P^{\mu} = (E, P^i)$$

Use definition of 4-momentum
$$\frac{dx^{\mu}}{d\lambda} = P^{\mu} = \left(E, P^{i}\right) \qquad \longrightarrow \qquad \frac{dP^{\mu}}{d\lambda} = -\Gamma^{\mu}_{\alpha\beta}P^{\alpha}P^{\beta} \qquad \qquad \frac{d^{2}x^{\mu}}{d\lambda^{2}} + \Gamma^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{d\lambda}\frac{dx^{\beta}}{d\lambda} = 0$$

$$\frac{d^2x^{\mu}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\lambda} \frac{dx^{\beta}}{d\lambda} = 0$$

Take $\mu = 0$ component

$$\frac{dE}{d\lambda} = -\Gamma^0_{ij} P^i P^j = -a\dot{a}P^2$$

$$= \frac{dt}{d\lambda} \frac{dE}{dt}$$

$$= \frac{d}{d\lambda} \frac{dE}{dt}$$

$$= \frac{d}{d\lambda} \frac{dE}{dt}$$

$$g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = L = 0$$

$$P = \frac{E}{a}$$
Energy today (at $a = 1$)

Massless particles:

$$g_{\mu\nu} \frac{dx^{\mu}}{d\lambda} \frac{dx^{\nu}}{d\lambda} = L = 0$$

$$\frac{dE}{dt} = -\frac{\dot{a}}{a}E$$

$$lue{}$$
 Energy today (at $\,a=1\,$

Solution:
$$E = \frac{E_0}{a(t)}$$

Particle's energy decays (That's why the redshift)

c.f. also temperature
$$T = \frac{T_0}{a(t)}$$

Redshift and scale factor

 E_{em} Photon energy

Photon wavelength
$$\lambda_{em} = \frac{1}{E_{em}}$$

 $a(t_{em})$ Emission

Today

Photon energy

$$E_0 = a(t)E_{em}$$

Photon wavelength
$$\lambda_0 = rac{1}{E_0} = rac{\lambda_{em}}{a(t)}$$

a = 1

$$t_0$$
 (Today)

Redshift

$$z \equiv \frac{\lambda_0 - \lambda_{em}}{\lambda_{em}}$$

$$1 + z = \frac{1}{a}$$

Measuring distance: use light

$$\frac{dt}{a} = \frac{dr}{\sqrt{1 - \kappa r^2}}$$

Horizon distance

$$\chi = \int_{t}^{t_0} \frac{dt'}{a(t')} = \int_{a}^{1} \frac{da'}{a'^2 H(a')} = \int_{0}^{z} \frac{dz'}{H(z')}$$

Co-moving distance

$$d_{com} = \frac{1}{\sqrt{\kappa}} \sin\left(\sqrt{\kappa}\chi\right)$$

Measuring distance

$$d_A = ad_{com}$$

Luminosity distance

$$d_L^2 = rac{L_s}{4\pi \mathcal{F}} = rac{ ext{Absolute luminosity of source}}{4\pi ext{ Observed flux}} = rac{d_{com}^2}{a^2}$$

Etherington's theorem (1933): $d_L = (1+z)^2 d_A$

$$d_L = (1+z)^2 d_A$$

irrespective of the underlying theory of gravity.

Theorem fails when photon number not conserved. E.g. the photon conversion into axions.

Summary so far: Expanding, homogeneous-isotropic universe

Friedman-Lemaître-Robertson-Walker (FLRW) metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$

Particles follow geodesics
$$\frac{d^2x^\mu}{d\lambda^2} + \Gamma^\mu_{\alpha\beta} \frac{dx^\alpha}{d\lambda} \frac{dx^\beta}{d\lambda} = 0$$

$$\Gamma^i_{0j} = H\delta^i_{\ j}$$

$$\Gamma^i_{0j} = H\delta^i_{\ j} \qquad \Gamma^0_{ij} = Hg_{ij} \qquad H(t) \equiv \frac{\dot{a}}{a}$$

$$g_{\mu
u} rac{dx^{\mu}}{d\lambda} rac{dx^{
u}}{d\lambda} = \left\{ egin{array}{c} -1 & {
m Massive} \\ 0 & {
m Massless} \end{array}
ight.$$

Photon energy, wavelength, temperature $E=rac{E_0}{a}$ $\lambda=a\lambda_0$ $T=rac{T_0}{a}$

$$\lambda = \frac{E_0}{a}$$
 $\lambda =$

$$T = \frac{1}{2}$$

Scale factor - redshift relation:
$$1+z=\frac{1}{a}$$

Distance measures
$$d_{com} = \frac{1}{\sqrt{\kappa}} \sin\left(\sqrt{\kappa}\chi\right)$$

$$\chi = \int_0^z \frac{dz'}{H(z')}$$

$$d_A = ad_{com} = a^2 d_L$$