
Cosmology exercise session – Solutions - IDPASC 2023

1. Suppose we have two observers A and B separated by coordinate distance rAB (i.e. the comoving
distance). A emits a light pulse at time temit which reaches B at time tobs. Now we know light rays
are null, hence they satisfy ds2 = 0 along the path of a photon. It follows that∫ tobs

temit

dt

a(t)
=

∫ rAB

0

dr√
1−Kr2

.

Now imagine A emits a second pulse at time temit + δtemit which arrives at B at time tobs + δtobs, It
travels the same comoving distance hence we have∫ tobs+δtobs

temit+δtemit

dt

a(t)
=

∫ rAB

0

dr√
1−Kr2

=

∫ tobs

temit

dt

a(t)

Hence it follows that for the case where the scale factor does not evolve much during the period
between the first and second pulse being emitted (such as a wavelength of light) then

δtobs

a(tobs)
=

δtemit

a(temit)

In particular considering the case where the time difference corresponds to say one wavelength, we
can say that light of freq νemit at A will be detected with frequency νobs at B where

νobs

νemit
=
δtemit

δtobs
=
a(temit)

a(tobs)

Thus the light received by B is redshifted

1 + z =
a(tobs)

a(temit)
, z =

λobs − λemit

λemit
=
νemit − νobs

νobs
.

2.

• a. We have that redshift is equal to

z =
λobs − λem

λem
=

8.50969− 1.21567

1.21567
= 6 (1)

corresponding to scale factor a = 1/7 ≈ 0.142857.

• b. We have that H = H0/a
3/2 = H0(1 + z)3/2 and H0 = 70km/s/Mpc = 3.336× 10−4Mpc−1.

– i. The comoving distance is

dcom =

∫ z

0

dz

H
=

1

H0

∫ 6

0
(1 + z)−3/2dz ≈ 1.24407

H0

≈ 1.24407

3.336× 0.7× 10−4
Mpc ≈ 5.327Gpc ≈ 1.6434× 1026m (2)



– ii. The angular-diameter distance of the object is

dA =
dcom
1 + z

=
1

7
dcom ≈ 761Mpc ≈ 2.3× 1025m (3)

– iii. The luminosity distance of the object is

dL =
dcom
1 + z

= (1 + z)2dA = 7dcom ≈ 37.2Gpc ≈ 1.15× 1027m (4)

• c. Here, H = H0

√
0.3(1 + z)3 + 0.7.

– i. The comoving distance is

dcom =

∫ z

0

dz

H
=

1

H0

∫ 6

0

1√
0.3(1 + z)3 + 0.7

dz ≈ 1.92561

H0
= 1.17172dΩΛ=0

com

≈ 1.17172× 5.327Gpc ≈ 8.25Gpc ≈ 2.5× 1026m (5)

– ii. The angular-diameter distance of the object is

dA = 1.17172dΩΛ=0
A ∼ 891Mpc = 2.69× 1025m (6)

– iii. The luminosity distance of the object is

dL = 1.17172dΩΛ=0
L = 43.5879Gpc ≈ 2.3× 1.341027m (7)

3a. We find the angular diameter distance as

dA = a(tem)r (8)

where aem = a(tem) is the scale factor at emission. Meanwhile the luminosity distance for a source of
intrinsic luminosity Ls is

dL =

√
Ls

4πF
(9)

where F is the observed flux. What we are after is the luminosity distance in an expanding Universe
compared to the one in a static Universe. The latter, would be equal to rcom. Now, luminosity is
Energy per unit time, that is δE/δt. We saw in the lectures that energy scales as Eem = Eobs/a(tem)
and we also saw from exercise 1 that δtem = a(tem)δtobs (assuming a = 1 today). So by the time light
comes to us as observers, the luminosity of the source would appear to be

Lobs = Lsa
2(tem) (10)

which we may associate with the luminosity distance in case of a static Universe. So

dL =

√
Ls

4πF
=

1

a

√
Lobs
4πF

(11)

=
rcom
a

(12)

Eliminating rcom we then find the desired relation

dL =
dA
a2

= dA(1 + z)2 (13)



3b. For matter domination H = H0(1 + z)3/2. Hence,

dA =
1

H0

1

1 + z

∫ z

0
(1 + z′)3/2dz′ (14)

=
2

H0(1 + z)

(
1− 1√

1 + z

)
(15)

3c. Setting to zero the derivative of the equation in 3b gives that the angular diameter distance
in a purely matter dominated universe reaches a maximum at redshift z = 5/4.

3d. The Universe is expanding.

4. In the following three questions we set c = 1 for convenience. To obtain the fluid equation, first
differentiate the Friedmann equation to yield

2ȧä

a2
− 2ȧ3

a3
=

8πG

3
ρ̇+

2κȧ

a3
.

Rearrange to obtain
2ȧ

a

(
ä

a
− ȧ2

a2
− κ

a2

)
=

8πG

3
ρ̇ (16)

Recall the acceleration (17) and Friedmann (18) equations

ä

a
= −4πG

3
(ρ+ 3p) (17)

ȧ2

a2
=

8πG

3
ρ− κ

a2
(18)

Sub into (16) to obtain
2ȧ

a

(
−4πG

3
(ρ+ 3p)− 8πG

3
ρ

)
=

8πG

3
ρ̇

Finally simplify to obtain the required result

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (19)

5. In terms of conformal time η, we have

da

dt
=
da

dη

dη

dt
=
a′

a
(20)

where a′ ≡ da
dη and dη

dt = 1
a . Similarly we have

ä =
d(ȧ)

dt
=
d(ȧ)

dη

dη

dt
=
a′′

a2
− a′2

a3
. (21)



For the acceleration equation, sub (21) into (17) and use (20) and (18) to eliminate the a′2

a4 term.
The answer then follows:

a′′ =
4πG

3
(ρ− 3p)a3 − κa (22)

For the Friedmann equation, simply sub (20) into (18) and the answer pops out:

a′2 =
8πG

3
ρa4 − κa2 (23)

6. Before e+e− annihilation, the relevant radiation species are photons (2 dof), 3 neutrino flavous (1
dof each), 3 anti-neutrino flavous (1 dof each), positrons (2 dof each) and electrons (2 dof each), for a
total of 10 fermionic and 2 bosonic dof. Hence, the entropy density before sb is

sb =
4

3

∑
I

ρI
TI

=
4

3

π2

30

(
2 +

7

8
∗ 10

)
T 3
ν (24)

=
43π2

90
T 3
ν (25)

where I runs over all the species above and where all species have the same temperature, which we
choose to be the neutrino temperature Tν .

After the annihilation, he relevant radiation species are photons (2 dof), 3 neutrino flavous (1 dof
each) and 3 anti-neutrino flavous (1 dof each), for a total of 6 fermionic and 2 bosonic dof. But,
now while the neutrino temperature is unchanged by the annihilation, and remains at Tν , the photon
thermal bath is heated by the annihilation so that the new photon temperature is Tγ .

Hence, the entropy density after sa is

sb =
4

3

∑
I

ρI
TI

=
4

3

π2

30

(
2T 3

γ +
7

8
∗ 6 T 3

ν

)
(26)

=
4π2

90

[
2

(
Tγ
Tν

)3

+
21

4

]
T 3
ν (27)

Since, the entropy is concerved, and since the annihilation is assumed to be instantaneous in redshift,
then Sb = Sa, leading to

43

4
=2

(
Tγ
Tν

)3

+
21

4
(28)

hence, (
Tγ
Tν

)3

=
11

4
(29)

hence

Tν =

(
4

11

)1/3

Tγ (30)



7. At the beginning massive neutrinos were relativistic (Tν � m), hence, for one neutrino/anti-
neutrino flavour

nν =
3

4

2ζ(3)

π2
T 3
ν (31)

where the factor of 3/4 is because neutrinos are fermions, and the 2 dof count one helicity of one

neutrino and one helicity of the antineutrino. Now we have seen that Tν =
(

4
11

)1/3
Tγ , hence,

nν =
3

11

2ζ(3)

π2
T 3
γ (32)

=
3

11
nγ (33)

When T ∼ m and hence forth, neutrinos are non-relativistic so that

ρν =mνnν (34)

At that point nν = 3
11nγ is still valid so that

ρν =
3

11
mν

2ζ(3)

π2
T 3
γ (35)

=mν
6ζ(3)

11π2
T 3

0γ

1

a3
(36)

=
ρ0ν

a3
(37)

where

ρ0ν =mν
6ζ(3)

11π2
T 3

0γ (38)

is the density of one flavour of massive neutrinos today. But Ων = ρ0ν/ρcrit. Plugging in the numbers

we have that ρcrit =
3H2

0
8πG with H0 = 2.137h × 10−42GeV and G = 6.67 × 10−11m3Kg−1s−2 =

6.7× 10−39GeV −2, leading to ρcrit = 8.13h2× 10−11eV 4. Meanwhile T0γ ≈ 2.72K = 2.34× 10−13GeV
so that we find

Ω0ν ≈
mν

94h2eV
(39)

per neutrino flavour.

9. We start from the equation in the problem set. For scales outside the Jeans length, we can ignore
the term k2c2

sδ and the equation becomes

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0 (40)

Now consider the term 4πGρ̄δ. The density ρ̄ is the energy density of matter. We re-express it in
terms of the total energy density ρ̄T to get

4πGρ̄ = 4πGΩmρ̄T =
3

2
ΩmH

2 (41)



Now for both curvature and cosmological constant domination Ωm is tiny and so we may neglect the
term 3

2ΩmH
2 and the equation to be solved becomes

δ̈ + 2Hδ̇ = 0 (42)

Now consider the two cases
9.a Curvature domination. For curvature domination we have the Friedmann equation

3H2 = −3K

a2
(43)

which is only valid for negative curvature K < 0. The equation simplifies to

ȧ2 = −K (44)

which has solution
a =

√
|K|t (45)

hence the Hubble parameter evolves as

H =
1

t
(46)

Thus the equation for δ becomes

δ̈ +
2

t
δ̇ = 0 (47)

We set A = δ̇ to get

Ȧ = −2

t
A (48)

which has solution

A =

(
t0
t

)2

(49)

where t0 is an integration constant. Thus replacing A with δ̇ we get

δ̇ =

(
t0
t

)2

(50)

which integrates to

δ = δ0 −
t20
t

(51)

9.b Cosmological constant domination. In this case the Hubble parameter is constant H = H0 and
the equation for δ becomes

δ̈ + 2H0δ̇ = 0 (52)

We set A = δ̇ to get
Ȧ = −2H0A (53)

which has solution
A = A0e

−2H0t (54)

where A0 is an integration constant. Thus replacing A with δ̇ we get

δ̇ = A0e
−2H0t (55)

which integrates to

δ = δ0 −
A0

2H0
e−2H0t (56)

where δ0 is a 2nd integration constant. This is the general solution.
9.c We see that for both curvature and cosmological constant domination, the solution for the density
contrast is equal to a constant plus a decaying mode. Thus in both cases, the density contrast stops



growing, thus structure formation stops if the Universe enters a curvature or a cosmological constant
period.

10.a The inverse metric tensor gµν will be a perturbation on the background inverse metric tensor ḡµν

which is

ḡµν =
1

a2

(
−1 0
0 γij

)
(57)

where γikγkj = δi j . Thus for the total gµν we should have

gµν =
1

a2

(
−1 + h00 0

0 γij + hij

)
(58)

mutiplying gµν with gµν we get

δµν = gµρgρν =
1

a2

(
−1 + h00 0

0 γik + hik

)
× a2

(
−(1 + 2Ψ) 0

0 (1− 2Φ)γkj + h
(T )
kj

)

=

(
−1 + h00 0

0 γik + hik

)(−(1 + 2Ψ) 0

0 (1− 2Φ)γkj + h
(T )
kj

)

=

(
1 + 2Ψ− h00 0

0
[
γik + hik

] [
(1− 2Φ)γkj + h

(T )
kj

])

=

(
1 + 2Ψ− h00 0

0 (1− 2Φ)γikγkj + γikh
(T )
kj + hikγkj

)
(59)

Now we can raise the indices on h
(T )
ij using the background spatial metric tensor γij . So we write

h
(T )
kj = γkpγjqh

(T )pq. We further multiply with γik as it appears in the matrix above to get γikh
(T )
kj =

γikγkpγjqh
(T )pq = δipγjqh

(T )pq = γkjh
(T )ik. So substituting this into the matrix we get

δµν = gµρgρν =

(
1 + 2Ψ− h00 0

0 δi j − 2Φγikγkj + γkjh
(T )ik + hikγkj

)

=

(
1 0
0 δi j

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (60)

This means that we must have
h00 = 2Ψ (61)

and
hij = 2Φγij − h(T )ij (62)

so that the inverst metric tensor is

gµν =
1

a2

(
−1 + 2Ψ 0

0 (1 + 2Φ)γij − h(T )ij

)
(63)

10.b We need to calculate uµuνg
µν . First let’s start from the background. Since the background is

homogeneous and isotropic, the background 3-velocity must be zero. So ū = (ū0,~0). Now we need to
find ū0. We have

−1 = ūµūν ḡ
µν = (ū0)2ḡ00 = − 1

a2
(ū0)2 (64)



so we solve for ū0 to get
ū0 = ±a (65)

We choose the + solution i.e. ū0 = a. This is purely conventional. Now let us consider the perturba-
tions. We write uµ = ūµ + δuµ. We need to find δu0. We have

−1 = uµuνg
µν

= (ūµ + δuµ)(ūν + δuν)(ḡµν + δgµν)

= (ūµ + δuµ)(ūν + δuν)ḡµν + (ūµ + δuµ)(ūν + δuν)δgµν

= (ūµ + δuµ)ūν ḡ
µν + (ūµ + δuµ)δuν ḡ

µν + ūµūνδg
µν

= ūµūν ḡ
µν + δuµūν ḡ

µν + ūµδuν ḡ
µν + ūµūνδg

µν (66)

Since ūµūν ḡ
µν = −1 we find that

0 = δuµūν ḡ
µν + ūµδuν ḡ

µν + ūµūνδg
µν (67)

Then since ūµ = (a,~0) the above expression gives

0 = δuµū0ḡ
µ0 + ū0δuν ḡ

0ν + ū0ū0δg
00 (68)

= aδuµḡ
µ0 + aδuν ḡ

0ν + Ψ (69)

But ḡµ0 is non-zero only for µ = 0 in which case ḡ00 = − 1
a2 . Therefore the above expression gives

0 = −2

a
δu0 + 2Ψ (70)

and solving for δu0 we get

δu0 = aΨ (71)

10.c On super-horizon scales we set k2 = 0 so that the equation becomes

h(T )′′ + 2Hh(T )′ = 0 (72)

The trivial solution is h(T ) = const. We need the non-trivial solution. Let A = h(T )′. Then

A′ + 2
a′

a
A = 0 (73)

where we have used H = a′

a . Therefore the solution is

A =
A0

a2
(74)

so that the general solution is

h(T ) = h
(T )
0 +A0

∫
dη

a2
(75)

where h
(T )
0 is a constant (the trivial solution). We see that the non-trivial solution proportional to A0

is decaying so we can ignore it. Therefore, the tensor mode on super-horizon scales stays constant in
time.

On sub-horizon scales the k2 term becomes important. The equation to be solved is that of a
damped harmonic oscillator. Thus, we expect the solution to be oscillatory with a decaying amplitude.


