Cosmology exercise session — Solutions - IDPASC 2023

1. Suppose we have two observers A and B separated by coordinate distance r4p (i.e. the comoving
distance). A emits a light pulse at time tcpi; which reaches B at time to,s. Now we know light rays
are null, hence they satisfy ds? = 0 along the path of a photon. It follows that

/tobs dt /'TAB dT
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Now imagine A emits a second pulse at time temit + dtemit Which arrives at B at time tops + dtops, 1t
travels the same comoving distance hence we have

/'tobs +0tobs dt /‘TAB dr /tobs dt
temit+§temit a(t) - 0 \ 1 - KTQ a temit a(t)
Hence it follows that for the case where the scale factor does not evolve much during the period

between the first and second pulse being emitted (such as a wavelength of light) then

5tobs _ 5temit
a(tobs) a(temit)

In particular considering the case where the time difference corresponds to say one wavelength, we
can say that light of freq vemit at A will be detected with frequency vops at B where

Vobs _ 5temit _ a(temit)
Vemit Otobs a(tobs)

Thus the light received by B is redshifted

142 = a(tobs) 5= )\obs — Aemit __ Vemit — Vobs
= , = — .
a(temit) )\emit Vobs

e a. We have that redshift is equal to

Aobs — Aem  8.50969 — 1.21567
Xem 1.21567 N

6 (1)

corresponding to scale factor a = 1/7 ~ 0.142857.
e b. We have that H = Hy/a%/? = Hy(1 + 2)3/? and Hy = 70km/s/Mpc = 3.336 x 10~*Mpc 1.

— i. The comoving distance is

z dz 1 /6 1.24407
com 0 H HO 0( ) 0

N 1.24407
™ 3.336 x 0.7 x 104

Mpe ~ 5.327Gpc ~ 1.6434 x 10*°m (2)



— ii. The angular-diameter distance of the object is

d 1
dy = 1‘1”; = ?dcom ~ T61Mpc ~ 2.3 x 10%°m (3)

— iii. The luminosity distance of the object is

d
dp, = 1cjrm = (1 + 2)%da = Tdeom =~ 37.2Gpc =~ 1.15 x 10*"m @
z

e c. Here, H = Hy+/0.3(1 + 2)3 + 0.7.

— i. The comoving distance is

1.92561 Q0
7 p— z & = 1.17172d,A "
e Jo H Ho/ \/031+z 0.7 Hy com
~ 1.17172 x 5.327Gpc ~ 8.25Gpc ~ 2.5 x 10%°m (5)
— ii. The angular-diameter distance of the object is
da = 1.17172d94=" ~ 891 Mpe = 2.69 x 10%°m (6)
— iii. The luminosity distance of the object is
dp, = 1.17172d2=0 = 43.5879Gpe ~ 2.3 x 1.3410%"m (7)
3a. We find the angular diameter distance as
da = a(tem)r (8)

where aen, = a(tenm) is the scale factor at emission. Meanwhile the luminosity distance for a source of
intrinsic luminosity L; is

Ly
4 F

where F is the observed flux. What we are after is the luminosity distance in an expanding Universe
compared to the one in a static Universe. The latter, would be equal to 7. Now, luminosity is
Energy per unit time, that is 6E/dt. We saw in the lectures that energy scales as Eep, = Eops/a(tem,)
and we also saw from exercise 1 that 0ten, = a(tem)dtops (assuming a = 1 today). So by the time light
comes to us as observers, the luminosity of the source would appear to be

dp = 9)

Lops = Lsa2(tem) (10)

which we may associate with the luminosity distance in case of a static Universe. So

Ls 1 \/ Lobs
dr \/47r.7-" aV 4nF (11)
Tcom
: (12)

Eliminating 7..;, we then find the desired relation

da

dr, =
2

—dA(1+Z)2 (13)



3b. For matter domination H = Hy(1 + z)3/2. Hence,

1 1 z
_ 1 N3/2 9.1 14
da H01+Z/0( + 2')%4dz (14)
2 1
= 1— 15
H0(1+z)< 1—|—z> (15)

3c. Setting to zero the derivative of the equation in 3b gives that the angular diameter distance
in a purely matter dominated universe reaches a maximum at redshift z = 5/4.

3d. The Universe is expanding.

4. In the following three questions we set ¢ = 1 for convenience. To obtain the fluid equation, first
differentiate the Friedmann equation to yield

2ad4  2a®>  8rG . 2ka
T_izip_i_

a a3 3 @
Rearrange to obtain
20 (4 a® k 8tG
il I 1
a <a a? a2) 3 7 (16)
Recall the acceleration (17) and Friedmann (18) equations
a 4G
2= 43 17
" 5 (p+3p) (17)
a? 8tG K
= =, 1
3 3P (18)
Sub into (16) to obtain
2a 47TG( +3p) 8rG \  8nG .
a 3 p P 3 Pl = 3 p
Finally simplify to obtain the required result
. a
p+3a (p+p)=0. (19)
5. In terms of conformal time 7, we have
d da d !
a_dady _d 0)

dt — dndt  a

where a’ = dn and 7/ = . Similarly we have

. d(a) d(a)dn a" a”
“Ta dn dt a2 a? (21)



!

For the acceleration equation, sub (21) into (17) and use (20) and (18) to eliminate the Cfl—f term.
The answer then follows: A
a’ = WT(/) —3p)a® — ka (22)

For the Friedmann equation, simply sub (20) into (18) and the answer pops out:

a? = ?pa4 — ka® (23)

6. Before eTe™ annihilation, the relevant radiation species are photons (2 dof), 3 neutrino flavous (1
dof each), 3 anti-neutrino flavous (1 dof each), positrons (2 dof each) and electrons (2 dof each), for a
total of 10 fermionic and 2 bosonic dof. Hence, the entropy density before s; is

4 pr 4w 7 3
=Y =" (24 -%10)|T 24
PT3LTy 330<+8* )” (24)
4372
= 73 25
90 v ( )

where I runs over all the species above and where all species have the same temperature, which we
choose to be the neutrino temperature 7},.

After the annihilation, he relevant radiation species are photons (2 dof), 3 neutrino flavous (1 dof
each) and 3 anti-neutrino flavous (1 dof each), for a total of 6 fermionic and 2 bosonic dof. But,
now while the neutrino temperature is unchanged by the annihilation, and remains at 7,,, the photon
thermal bath is heated by the annihilation so that the new photon temperature is 7T’,.

Hence, the entropy density after s, is

4 pr 4 3 7 3
S N () puapa 26
T3 330< v oty (26)
Ax? T,\* 21
= |22 =13 27
w |2(7) + 7)™ @

Since, the entropy is concerved, and since the annihilation is assumed to be instantaneous in redshift,
then S, = S,, leading to

43 7\ 21
2 o5 (ir 2 2
4 (T,,) T (28)
hence,
T,\* 11
e 29
(%) (29)
hence



7. At the beginning massive neutrinos were relativistic (7, > m), hence, for one neutrino/anti-
neutrino flavour

4 n2 7Y

(31)

where the factor of 3/4 is because neutrinos are fermions, and the 2 dof count one helicity of one

neutrino and one helicity of the antineutrino. Now we have seen that T, = (%)1/ 5 T’,, hence,
3 2¢(3) .3
[ 2 2
11 7«2 77 (32)
3
When T ~ m and hence forth, neutrinos are non-relativistic so that
Py =My, (34)
At that point n, = %7% is still valid so that
3 20(3), 3
Pv :ﬁml/ 7'('2 o7 (35)
6¢(3) 3 1
TR 0 g3 (36)
Pov
@ 37)
where
6¢(3)
Pov = ungy (38)

is the density of one flavour of massive neutrinos today. But Q, = poy/perit. Plugging in the numbers
2

we have that pei = ood with Hy = 2.137h x 107%2GeV and G = 6.67 x 10" m3Kg1s~2 =

6.7 x 10739GeV 2, leading to perit = 8.13h% x 10~ HeV4. Meanwhile T, &~ 2.72K = 2.34 x 10~ 13GeV

so that we find

m

o, ~—_ Y
% = 94n2eV

(39)

per neutrino flavour.

9. We start from the equation in the problem set. For scales outside the Jeans length, we can ignore
the term k2¢25 and the equation becomes

6+ 2H — 4rGps = 0 (40)

Now consider the term 47Gpd. The density p is the energy density of matter. We re-express it in
terms of the total energy density pr to get

4nGp = 4nGQpr = ngHQ (41)



Now for both curvature and cosmological constant domination {2, is tiny and so we may neglect the

term %QmH 2 and the equation to be solved becomes
0+2H5 =0

Now consider the two cases
9.a Curvature domination. For curvature domination we have the Friedmann equation

W= -K
which has solution
a=+/|K|t
hence the Hubble parameter evolves as
1
H=-
t
Thus the equation for § becomes
.92,
d+-6=0
t
We set A =4 to get
. 2
A=—-A
t

which has solution )
-
t

where tg is an integration constant. Thus replacing A with 5 we get
2
= (1
t

2
5:50—%0

which integrates to

(42)

(51)

9.b Cosmological constant domination. In this case the Hubble parameter is constant H = Hy and

the equation for § becomes ) '
o+ 2H0(5 =0

We set A = to get .
A= —-2HyA

which has solution
A — Aoe—QHot

where Ay is an integration constant. Thus replacing A with § we get
5 — Aoe—QHot

which integrates to

A
(S = 60 — 72];0 6_2H0t

where dg is a 2nd integration constant. This is the general solution.

(52)

(53)

(54)

(55)

(56)

9.c We see that for both curvature and cosmological constant domination, the solution for the density
contrast is equal to a constant plus a decaying mode. Thus in both cases, the density contrast stops



growing, thus structure formation stops if the Universe enters a curvature or a cosmological constant
period.

10.a The inverse metric tensor g" will be a perturbation on the background inverse metric tensor g

which is
1 /-1 0
g a2 < 0 ’Y”) (57)
where ’yik’ykj =4 ;- Thus for the total g"” we should have
1 (—1+h% 0
. . .
g = a2 < 0 ,ij + hzy> (58)

mutiplying ¢g"” with g,, we get

i _ o B i —1+ Ro0 ‘ 0 . o2 —(1+2v) 0
v =9 9 =2 0 v* 4 hik 0 (1_2@)’ij+hg')

(=14 0 —(1+27) 0
- A 0 (1 - 20)y4; + i

1420 — p00 0
- 0 [y + Bi#] (1 = 20) 85 + b |
(1 + 2y — poo 0

) . ) 59
0 (1 _ 2@)7116,}%:], + ,yzkh’(g) + hzk,ykj> ( )

Now we can raise the indices on hg) using the background spatial metric tensor 7;;. So we write

hlg) = 'ykpfyth(T)pq. We further multiply with ¥ as it appears in the matrix above to get ’yikhg) =

'yik'ykp*yth(T)pq = 5;7th(T)pq = vkjh(T)ik. So substituting this into the matrix we get

b gy 1420 — p% 0
v =09 "9 = 0 5Zj _2(1)’Ylk’ij+'ijh(T)zk+hlk’ij
1 0 0O
1 0 01 00
- <0 63)‘ 0010 (60)
0 0 0 1
This means that we must have
h = 2w (61)
and
K = 28~ — p(1)i (62)

so that the inverst metric tensor is

L1 (1420 0
9" :a2< 0 (1+2<I>)7ij—h(T)ij> (63)

10.b We need to calculate u,u,g". First let’s start from the background. Since the background is
homogeneous and isotropic, the background 3-velocity must be zero. So u = (g, 0). Now we need to
find ug. We have

1
“1=uu,g" = (10)°5" = ~ (@)’ (64)



so we solve for g to get
iy = *a (65)

We choose the + solution i.e. @y = a. This is purely conventional. Now let us consider the perturba-
tions. We write u,, = 1, + du,. We need to find dug. We have

-1 = wuu,g"”
(@ + G (@ + 5, ) + 59
= (uy+ ouy)(ty + 0wy )g"” + (u, + ouy) (U + duy)dgh”
= (@ + 0w g" + (i, + Oy, )0u, g + iy, 09"

= Uty " + duut, g + u,0u, g"t + U, 09" (66)
Since U, g"" = —1 we find that
0 = du,u, g"” + w,du, g" + u,u,09M" (67)

Then since 4, = (a,0) the above expression gives

0 = duytiog" + todu, g™ + totiodg™ (68)
= adu,g" + adu,g" + ¥ (69)
But g0 is non-zero only for u = 0 in which case g% = —a%. Therefore the above expression gives
2
0 = ——dug+2v (70)
a
and solving for dug we get
dug = aVl (71)

10.c On super-horizon scales we set k% = 0 so that the equation becomes
hD" L oyn™' = o (72)
The trivial solution is A7) = const. We need the non-trivial solution. Let A = A(D)’. Then

/! a/
At2-4=0 (73)

where we have used H = % Therefore the solution is

Ao
A= ol (74)
so that the general solution is
d
WD = hg + Ag / e (75)

where héT) is a constant (the trivial solution). We see that the non-trivial solution proportional to Ay

is decaying so we can ignore it. Therefore, the tensor mode on super-horizon scales stays constant in
time.

On sub-horizon scales the k2 term becomes important. The equation to be solved is that of a
damped harmonic oscillator. Thus, we expect the solution to be oscillatory with a decaying amplitude.



