Cosmology exercise session - Solutions - IDPASC 2023

1. Suppose we have two observers A and B separated by coordinate distance $r_{A B}$ (i.e. the comoving distance). A emits a light pulse at time $t_{\text {emit }}$ which reaches B at time $t_{\text {obs }}$. Now we know light rays are null, hence they satisfy $d s^{2}=0$ along the path of a photon. It follows that

$$
\int_{t_{\mathrm{emit}}}^{t_{\mathrm{obs}}} \frac{d t}{a(t)}=\int_{0}^{r_{A B}} \frac{d r}{\sqrt{1-K r^{2}}}
$$

Now imagine A emits a second pulse at time $t_{\text {emit }}+\delta t_{\text {emit }}$ which arrives at B at time $t_{\text {obs }}+\delta t_{\text {obs }}$, It travels the same comoving distance hence we have

$$
\int_{t_{\mathrm{emit}}+\delta t_{\mathrm{emit}}}^{t_{\mathrm{obs}}+\delta t_{\mathrm{obs}}} \frac{d t}{a(t)}=\int_{0}^{r_{A B}} \frac{d r}{\sqrt{1-K r^{2}}}=\int_{t_{\mathrm{emit}}}^{t_{\mathrm{obs}}} \frac{d t}{a(t)}
$$

Hence it follows that for the case where the scale factor does not evolve much during the period between the first and second pulse being emitted (such as a wavelength of light) then

$$
\frac{\delta t_{\mathrm{obs}}}{a\left(t_{\mathrm{obs}}\right)}=\frac{\delta t_{\mathrm{emit}}}{a\left(t_{\mathrm{emit}}\right)}
$$

In particular considering the case where the time difference corresponds to say one wavelength, we can say that light of freq $\nu_{\text {emit }}$ at A will be detected with frequency $\nu_{\text {obs }}$ at B where

$$
\frac{\nu_{\mathrm{obs}}}{\nu_{\mathrm{emit}}}=\frac{\delta t_{\mathrm{emit}}}{\delta t_{\mathrm{obs}}}=\frac{a\left(t_{\mathrm{emit}}\right)}{a\left(t_{\mathrm{obs}}\right)}
$$

Thus the light received by B is redshifted

$$
1+z=\frac{a\left(t_{\mathrm{obs}}\right)}{a\left(t_{\mathrm{emit}}\right)}, \quad z=\frac{\lambda_{\mathrm{obs}}-\lambda_{\mathrm{emit}}}{\lambda_{\mathrm{emit}}}=\frac{\nu_{\mathrm{emit}}-\nu_{\mathrm{obs}}}{\nu_{\mathrm{obs}}}
$$

2.

- a. We have that redshift is equal to

$$
\begin{equation*}
z=\frac{\lambda_{o b s}-\lambda_{e m}}{\lambda_{e m}}=\frac{8.50969-1.21567}{1.21567}=6 \tag{1}
\end{equation*}
$$

corresponding to scale factor $a=1 / 7 \approx 0.142857$.

- b. We have that $H=H_{0} / a^{3 / 2}=H_{0}(1+z)^{3 / 2}$ and $H_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}=3.336 \times 10^{-4} \mathrm{Mpc}^{-1}$.
- i. The comoving distance is

$$
\begin{align*}
d_{c o m}= & \int_{0}^{z} \frac{d z}{H}=\frac{1}{H_{0}} \int_{0}^{6}(1+z)^{-3 / 2} d z \approx \frac{1.24407}{H_{0}} \\
& \approx \frac{1.24407}{3.336 \times 0.7 \times 10^{-4}} M p c \approx 5.327 G p c \approx 1.6434 \times 10^{26} \mathrm{~m} \tag{2}
\end{align*}
$$

- ii. The angular-diameter distance of the object is

$$
\begin{equation*}
d_{A}=\frac{d_{c o m}}{1+z}=\frac{1}{7} d_{c o m} \approx 761 M p c \approx 2.3 \times 10^{25} \mathrm{~m} \tag{3}
\end{equation*}
$$

iii. The luminosity distance of the object is

$$
\begin{equation*}
d_{L}=\frac{d_{c o m}}{1+z}=(1+z)^{2} d_{A}=7 d_{c o m} \approx 37.2 G p c \approx 1.15 \times 10^{27} \mathrm{~m} \tag{4}
\end{equation*}
$$

- c. Here, $H=H_{0} \sqrt{0.3(1+z)^{3}+0.7}$.
- i. The comoving distance is

$$
\begin{align*}
d_{c o m}= & \int_{0}^{z} \frac{d z}{H}=\frac{1}{H_{0}} \int_{0}^{6} \frac{1}{\sqrt{0.3(1+z)^{3}+0.7}} d z \approx \frac{1.92561}{H_{0}}=1.17172 d_{c o m}^{\Omega_{\Lambda}=0} \\
& \approx 1.17172 \times 5.327 G p c \approx 8.25 G p c \approx 2.5 \times 10^{26} \mathrm{~m} \tag{5}
\end{align*}
$$

- ii. The angular-diameter distance of the object is

$$
\begin{equation*}
d_{A}=1.17172 d_{A}^{\Omega_{\Lambda}=0} \sim 891 M p c=2.69 \times 10^{25} m \tag{6}
\end{equation*}
$$

- iii. The luminosity distance of the object is

$$
\begin{equation*}
d_{L}=1.17172 d_{L}^{\Omega_{\Lambda}=0}=43.5879 G p c \approx 2.3 \times 1.3410^{27} \mathrm{~m} \tag{7}
\end{equation*}
$$

3a. We find the angular diameter distance as

$$
\begin{equation*}
d_{A}=a\left(t_{e m}\right) r \tag{8}
\end{equation*}
$$

where $a_{e m}=a\left(t_{e m}\right)$ is the scale factor at emission. Meanwhile the luminosity distance for a source of intrinsic luminosity L_{s} is

$$
\begin{equation*}
d_{L}=\sqrt{\frac{L_{s}}{4 \pi \mathcal{F}}} \tag{9}
\end{equation*}
$$

where \mathcal{F} is the observed flux. What we are after is the luminosity distance in an expanding Universe compared to the one in a static Universe. The latter, would be equal to $r_{c o m}$. Now, luminosity is Energy per unit time, that is $\delta E / \delta t$. We saw in the lectures that energy scales as $E_{e m}=E_{o b s} / a\left(t_{e m}\right)$ and we also saw from exercise 1 that $\delta t_{e m}=a\left(t_{e m}\right) \delta t_{\text {obs }}$ (assuming $a=1$ today). So by the time light comes to us as observers, the luminosity of the source would appear to be

$$
\begin{equation*}
L_{o b s}=L_{s} a^{2}\left(t_{e m}\right) \tag{10}
\end{equation*}
$$

which we may associate with the luminosity distance in case of a static Universe. So

$$
\begin{align*}
d_{L} & =\sqrt{\frac{L_{s}}{4 \pi \mathcal{F}}}=\frac{1}{a} \sqrt{\frac{L_{o b s}}{4 \pi \mathcal{F}}} \tag{11}\\
& =\frac{r_{c o m}}{a} \tag{12}
\end{align*}
$$

Eliminating $r_{c o m}$ we then find the desired relation

$$
\begin{equation*}
d_{L}=\frac{d_{A}}{a^{2}}=d_{A}(1+z)^{2} \tag{13}
\end{equation*}
$$

3b. For matter domination $H=H_{0}(1+z)^{3 / 2}$. Hence,

$$
\begin{align*}
d_{A} & =\frac{1}{H_{0}} \frac{1}{1+z} \int_{0}^{z}\left(1+z^{\prime}\right)^{3 / 2} d z^{\prime} \tag{14}\\
& =\frac{2}{H_{0}(1+z)}\left(1-\frac{1}{\sqrt{1+z}}\right) \tag{15}
\end{align*}
$$

3c. Setting to zero the derivative of the equation in 3 b gives that the angular diameter distance in a purely matter dominated universe reaches a maximum at redshift $z=5 / 4$.

3d. The Universe is expanding.
4. In the following three questions we set $c=1$ for convenience. To obtain the fluid equation, first differentiate the Friedmann equation to yield

$$
\frac{2 \dot{a} \ddot{a}}{a^{2}}-\frac{2 \dot{a}^{3}}{a^{3}}=\frac{8 \pi G}{3} \dot{\rho}+\frac{2 \kappa \dot{a}}{a^{3}}
$$

Rearrange to obtain

$$
\begin{equation*}
\frac{2 \dot{a}}{a}\left(\frac{\ddot{a}}{a}-\frac{\dot{a}^{2}}{a^{2}}-\frac{\kappa}{a^{2}}\right)=\frac{8 \pi G}{3} \dot{\rho} \tag{16}
\end{equation*}
$$

Recall the acceleration (17) and Friedmann (18) equations

$$
\begin{align*}
\frac{\ddot{a}}{a} & =-\frac{4 \pi G}{3}(\rho+3 p) \tag{17}\\
\frac{\dot{a}^{2}}{a^{2}} & =\frac{8 \pi G}{3} \rho-\frac{\kappa}{a^{2}} \tag{18}
\end{align*}
$$

Sub into (16) to obtain

$$
\frac{2 \dot{a}}{a}\left(-\frac{4 \pi G}{3}(\rho+3 p)-\frac{8 \pi G}{3} \rho\right)=\frac{8 \pi G}{3} \dot{\rho}
$$

Finally simplify to obtain the required result

$$
\begin{equation*}
\dot{\rho}+3 \frac{\dot{a}}{a}(\rho+p)=0 \tag{19}
\end{equation*}
$$

5. In terms of conformal time η, we have

$$
\begin{equation*}
\frac{d a}{d t}=\frac{d a}{d \eta} \frac{d \eta}{d t}=\frac{a^{\prime}}{a} \tag{20}
\end{equation*}
$$

where $a^{\prime} \equiv \frac{d a}{d \eta}$ and $\frac{d \eta}{d t}=\frac{1}{a}$. Similarly we have

$$
\begin{equation*}
\ddot{a}=\frac{d(\dot{a})}{d t}=\frac{d(\dot{a})}{d \eta} \frac{d \eta}{d t}=\frac{a^{\prime \prime}}{a^{2}}-\frac{a^{\prime 2}}{a^{3}} . \tag{21}
\end{equation*}
$$

For the acceleration equation, sub (21) into (17) and use (20) and (18) to eliminate the $\frac{a^{\prime 2}}{a^{4}}$ term. The answer then follows:

$$
\begin{equation*}
a^{\prime \prime}=\frac{4 \pi G}{3}(\rho-3 p) a^{3}-\kappa a \tag{22}
\end{equation*}
$$

For the Friedmann equation, simply sub (20) into (18) and the answer pops out:

$$
\begin{equation*}
a^{\prime 2}=\frac{8 \pi G}{3} \rho a^{4}-\kappa a^{2} \tag{23}
\end{equation*}
$$

6. Before $e^{+} e^{-}$annihilation, the relevant radiation species are photons (2 dof), 3 neutrino flavous (1 dof each), 3 anti-neutrino flavous (1 dof each), positrons (2 dof each) and electrons (2 dof each), for a total of 10 fermionic and 2 bosonic dof. Hence, the entropy density before s_{b} is

$$
\begin{align*}
s_{b} & =\frac{4}{3} \sum_{I} \frac{\rho_{I}}{T_{I}}=\frac{4}{3} \frac{\pi^{2}}{30}\left(2+\frac{7}{8} * 10\right) T_{\nu}^{3} \tag{24}\\
& =\frac{43 \pi^{2}}{90} T_{\nu}^{3} \tag{25}
\end{align*}
$$

where I runs over all the species above and where all species have the same temperature, which we choose to be the neutrino temperature T_{ν}.

After the annihilation, he relevant radiation species are photons (2 dof), 3 neutrino flavous (1 dof each) and 3 anti-neutrino flavous (1 dof each), for a total of 6 fermionic and 2 bosonic dof. But, now while the neutrino temperature is unchanged by the annihilation, and remains at T_{ν}, the photon thermal bath is heated by the annihilation so that the new photon temperature is T_{γ}.

Hence, the entropy density after s_{a} is

$$
\begin{align*}
s_{b} & =\frac{4}{3} \sum_{I} \frac{\rho_{I}}{T_{I}}=\frac{4}{3} \frac{\pi^{2}}{30}\left(2 T_{\gamma}^{3}+\frac{7}{8} * 6 T_{\nu}^{3}\right) \tag{26}\\
& =\frac{4 \pi^{2}}{90}\left[2\left(\frac{T_{\gamma}}{T_{\nu}}\right)^{3}+\frac{21}{4}\right] T_{\nu}^{3} \tag{27}
\end{align*}
$$

Since, the entropy is concerved, and since the annihilation is assumed to be instantaneous in redshift, then $S_{b}=S_{a}$, leading to

$$
\begin{equation*}
\frac{43}{4}=2\left(\frac{T_{\gamma}}{T_{\nu}}\right)^{3}+\frac{21}{4} \tag{28}
\end{equation*}
$$

hence,

$$
\begin{equation*}
\left(\frac{T_{\gamma}}{T_{\nu}}\right)^{3}=\frac{11}{4} \tag{29}
\end{equation*}
$$

hence

$$
\begin{equation*}
T_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma} \tag{30}
\end{equation*}
$$

7. At the beginning massive neutrinos were relativistic $\left(T_{\nu} \gg m\right)$, hence, for one neutrino/antineutrino flavour

$$
\begin{equation*}
n_{\nu}=\frac{3}{4} \frac{2 \zeta(3)}{\pi^{2}} T_{\nu}^{3} \tag{31}
\end{equation*}
$$

where the factor of $3 / 4$ is because neutrinos are fermions, and the 2 dof count one helicity of one neutrino and one helicity of the antineutrino. Now we have seen that $T_{\nu}=\left(\frac{4}{11}\right)^{1 / 3} T_{\gamma}$, hence,

$$
\begin{align*}
n_{\nu} & =\frac{3}{11} \frac{2 \zeta(3)}{\pi^{2}} T_{\gamma}^{3} \tag{32}\\
& =\frac{3}{11} n_{\gamma} \tag{33}
\end{align*}
$$

When $T \sim m$ and hence forth, neutrinos are non-relativistic so that

$$
\begin{equation*}
\rho_{\nu}=m_{\nu} n_{\nu} \tag{34}
\end{equation*}
$$

At that point $n_{\nu}=\frac{3}{11} n_{\gamma}$ is still valid so that

$$
\begin{align*}
\rho_{\nu} & =\frac{3}{11} m_{\nu} \frac{2 \zeta(3)}{\pi^{2}} T_{\gamma}^{3} \tag{35}\\
& =m_{\nu} \frac{6 \zeta(3)}{11 \pi^{2}} T_{0 \gamma}^{3} \frac{1}{a^{3}} \tag{36}\\
& =\frac{\rho_{0 \nu}}{a^{3}} \tag{37}
\end{align*}
$$

where

$$
\begin{equation*}
\rho_{0 \nu}=m_{\nu} \frac{6 \zeta(3)}{11 \pi^{2}} T_{0 \gamma}^{3} \tag{38}
\end{equation*}
$$

is the density of one flavour of massive neutrinos today. But $\Omega_{\nu}=\rho_{0 \nu} / \rho_{\text {crit }}$. Plugging in the numbers we have that $\rho_{\text {crit }}=\frac{3 H_{0}^{2}}{8 \pi G}$ with $H_{0}=2.137 \mathrm{~h} \times 10^{-42} \mathrm{GeV}$ and $G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{Kg}^{-1} \mathrm{~s}^{-2}=$ $6.7 \times 10^{-39} \mathrm{GeV}^{-2}$, leading to $\rho_{\text {crit }}=8.13 h^{2} \times 10^{-11} \mathrm{eV}^{4}$. Meanwhile $T_{0 \gamma} \approx 2.72 \mathrm{~K}=2.34 \times 10^{-13} \mathrm{GeV}$ so that we find

$$
\begin{equation*}
\Omega_{0 \nu} \approx \frac{m_{\nu}}{94 h^{2} e V} \tag{39}
\end{equation*}
$$

per neutrino flavour.
9. We start from the equation in the problem set. For scales outside the Jeans length, we can ignore the term $k^{2} c_{s}^{2} \delta$ and the equation becomes

$$
\begin{equation*}
\ddot{\delta}+2 H \dot{\delta}-4 \pi G \bar{\rho} \delta=0 \tag{40}
\end{equation*}
$$

Now consider the term $4 \pi G \bar{\rho} \delta$. The density $\bar{\rho}$ is the energy density of matter. We re-express it in terms of the total energy density $\bar{\rho}_{T}$ to get

$$
\begin{equation*}
4 \pi G \bar{\rho}=4 \pi G \Omega_{m} \bar{\rho}_{T}=\frac{3}{2} \Omega_{m} H^{2} \tag{41}
\end{equation*}
$$

Now for both curvature and cosmological constant domination Ω_{m} is tiny and so we may neglect the term $\frac{3}{2} \Omega_{m} H^{2}$ and the equation to be solved becomes

$$
\begin{equation*}
\ddot{\delta}+2 H \dot{\delta}=0 \tag{42}
\end{equation*}
$$

Now consider the two cases
9.a Curvature domination. For curvature domination we have the Friedmann equation

$$
\begin{equation*}
3 H^{2}=-\frac{3 K}{a^{2}} \tag{43}
\end{equation*}
$$

which is only valid for negative curvature $K<0$. The equation simplifies to

$$
\begin{equation*}
\dot{a}^{2}=-K \tag{44}
\end{equation*}
$$

which has solution

$$
\begin{equation*}
a=\sqrt{|K|} t \tag{45}
\end{equation*}
$$

hence the Hubble parameter evolves as

$$
\begin{equation*}
H=\frac{1}{t} \tag{46}
\end{equation*}
$$

Thus the equation for δ becomes

$$
\begin{equation*}
\ddot{\delta}+\frac{2}{t} \dot{\delta}=0 \tag{47}
\end{equation*}
$$

We set $A=\dot{\delta}$ to get

$$
\begin{equation*}
\dot{A}=-\frac{2}{t} A \tag{48}
\end{equation*}
$$

which has solution

$$
\begin{equation*}
A=\left(\frac{t_{0}}{t}\right)^{2} \tag{49}
\end{equation*}
$$

where t_{0} is an integration constant. Thus replacing A with $\dot{\delta}$ we get

$$
\begin{equation*}
\dot{\delta}=\left(\frac{t_{0}}{t}\right)^{2} \tag{50}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\delta=\delta_{0}-\frac{t_{0}^{2}}{t} \tag{51}
\end{equation*}
$$

9.b Cosmological constant domination. In this case the Hubble parameter is constant $H=H_{0}$ and the equation for δ becomes

$$
\begin{equation*}
\ddot{\delta}+2 H_{0} \dot{\delta}=0 \tag{52}
\end{equation*}
$$

We set $A=\dot{\delta}$ to get

$$
\begin{equation*}
\dot{A}=-2 H_{0} A \tag{53}
\end{equation*}
$$

which has solution

$$
\begin{equation*}
A=A_{0} e^{-2 H_{0} t} \tag{54}
\end{equation*}
$$

where A_{0} is an integration constant. Thus replacing A with $\dot{\delta}$ we get

$$
\begin{equation*}
\dot{\delta}=A_{0} e^{-2 H_{0} t} \tag{55}
\end{equation*}
$$

which integrates to

$$
\begin{equation*}
\delta=\delta_{0}-\frac{A_{0}}{2 H_{0}} e^{-2 H_{0} t} \tag{56}
\end{equation*}
$$

where δ_{0} is a 2 nd integration constant. This is the general solution.
9.c We see that for both curvature and cosmological constant domination, the solution for the density contrast is equal to a constant plus a decaying mode. Thus in both cases, the density contrast stops
growing, thus structure formation stops if the Universe enters a curvature or a cosmological constant period.
10. a The inverse metric tensor $g^{\mu \nu}$ will be a perturbation on the background inverse metric tensor $\bar{g}^{\mu \nu}$ which is

$$
\bar{g}^{\mu \nu}=\frac{1}{a^{2}}\left(\begin{array}{cc}
-1 & 0 \tag{57}\\
0 & \gamma^{i j}
\end{array}\right)
$$

where $\gamma^{i k} \gamma_{k j}=\delta^{i}{ }_{j}$. Thus for the total $g^{\mu \nu}$ we should have

$$
g^{\mu \nu}=\frac{1}{a^{2}}\left(\begin{array}{cc}
-1+h^{00} & 0 \tag{58}\\
0 & \gamma^{i j}+h^{i j}
\end{array}\right)
$$

mutiplying $g^{\mu \nu}$ with $g_{\mu \nu}$ we get

$$
\begin{align*}
\delta_{\nu}^{\mu}=g^{\mu \rho} g_{\rho \nu} & =\frac{1}{a^{2}}\left(\begin{array}{cc}
-1+h^{00} & 0 \\
0 & \gamma^{i k}+h^{i k}
\end{array}\right) \times a^{2}\left(\begin{array}{cc}
-(1+2 \Psi) & 0 \\
0 & (1-2 \Phi) \gamma_{k j}+h_{k j}^{(T)}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1+h^{00} & 0 \\
0 & \gamma^{i k}+h^{i k}
\end{array}\right)\left(\begin{array}{cc}
-(1+2 \Psi) & 0 \\
0 & (1-2 \Phi) \gamma_{k j}+h_{k j}^{(T)}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+2 \Psi-h^{00} & 0 \\
0 & {\left[\gamma^{i k}+h^{i k}\right]\left[\begin{array}{c}
(1-2 \Phi) \gamma_{k j}+h_{k j}^{(T)}
\end{array}\right)}
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+2 \Psi-h^{00} & (1-2 \Phi) \gamma^{i k} \gamma_{k j}+\gamma^{i k} h_{k j}^{(T)}+h^{i k} \gamma_{k j}
\end{array}\right) \tag{59}
\end{align*}
$$

Now we can raise the indices on $h_{i j}^{(T)}$ using the background spatial metric tensor $\gamma_{i j}$. So we write $h_{k j}^{(T)}=\gamma_{k p} \gamma_{j q} h^{(T) p q}$. We further multiply with $\gamma^{i k}$ as it appears in the matrix above to get $\gamma^{i k} h_{k j}^{(T)}=$ $\gamma^{i k} \gamma_{k p} \gamma_{j q} h^{(T) p q}=\delta_{p}^{i} \gamma_{j q} h^{(T) p q}=\gamma_{k j} h^{(T) i k}$. So substituting this into the matrix we get

$$
\left.\left.\left.\begin{array}{rl}
\delta_{\nu}^{\mu}=g^{\mu \rho} g_{\rho \nu} & =\left(\begin{array}{c}
1+2 \Psi-h^{00} \\
0
\end{array} \delta^{i}{ }_{j}-2 \Phi \gamma^{i k} \gamma_{k j}+\gamma_{k j} h^{(T) i k}+h^{i k} \gamma_{k j}\right.
\end{array}\right)\right) . \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \tag{60}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

This means that we must have

$$
\begin{equation*}
h^{00}=2 \Psi \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{i j}=2 \Phi \gamma^{i j}-h^{(T) i j} \tag{62}
\end{equation*}
$$

so that the inverst metric tensor is

$$
g^{\mu \nu}=\frac{1}{a^{2}}\left(\begin{array}{cc}
-1+2 \Psi & 0 \tag{63}\\
0 & (1+2 \Phi) \gamma^{i j}-h^{(T) i j}
\end{array}\right)
$$

10.b We need to calculate $u_{\mu} u_{\nu} g^{\mu \nu}$. First let's start from the background. Since the background is homogeneous and isotropic, the background 3 -velocity must be zero. So $\bar{u}=\left(\bar{u}_{0}, \overrightarrow{0}\right)$. Now we need to find \bar{u}_{0}. We have

$$
\begin{equation*}
-1=\bar{u}_{\mu} \bar{u}_{\nu} \bar{g}^{\mu \nu}=\left(\bar{u}_{0}\right)^{2} \bar{g}^{00}=-\frac{1}{a^{2}}\left(\bar{u}_{0}\right)^{2} \tag{64}
\end{equation*}
$$

so we solve for \bar{u}_{0} to get

$$
\begin{equation*}
\bar{u}_{0}= \pm a \tag{65}
\end{equation*}
$$

We choose the + solution i.e. $\bar{u}_{0}=a$. This is purely conventional. Now let us consider the perturbations. We write $u_{\mu}=\bar{u}_{\mu}+\delta u_{\mu}$. We need to find δu_{0}. We have

$$
\begin{align*}
-1 & =u_{\mu} u_{\nu} g^{\mu \nu} \\
& =\left(\bar{u}_{\mu}+\delta u_{\mu}\right)\left(\bar{u}_{\nu}+\delta u_{\nu}\right)\left(\bar{g}^{\mu \nu}+\delta g^{\mu \nu}\right) \\
& =\left(\bar{u}_{\mu}+\delta u_{\mu}\right)\left(\bar{u}_{\nu}+\delta u_{\nu}\right) \bar{g}^{\mu \nu}+\left(\bar{u}_{\mu}+\delta u_{\mu}\right)\left(\bar{u}_{\nu}+\delta u_{\nu}\right) \delta g^{\mu \nu} \\
& =\left(\bar{u}_{\mu}+\delta u_{\mu}\right) \bar{u}_{\nu} \bar{g}^{\mu \nu}+\left(\bar{u}_{\mu}+\delta u_{\mu}\right) \delta u_{\nu} \bar{g}^{\mu \nu}+\bar{u}_{\mu} \bar{u}_{\nu} \delta g^{\mu \nu} \\
& =\bar{u}_{\mu} \bar{u}_{\nu} \bar{g}^{\mu \nu}+\delta u_{\mu} \bar{u}_{\nu} \bar{g}^{\mu \nu}+\bar{u}_{\mu} \delta u_{\nu} \bar{g}^{\mu \nu}+\bar{u}_{\mu} \bar{u}_{\nu} \delta g^{\mu \nu} \tag{66}
\end{align*}
$$

Since $\bar{u}_{\mu} \bar{u}_{\nu} \bar{g}^{\mu \nu}=-1$ we find that

$$
\begin{equation*}
0=\delta u_{\mu} \bar{u}_{\nu} \bar{g}^{\mu \nu}+\bar{u}_{\mu} \delta u_{\nu} \bar{g}^{\mu \nu}+\bar{u}_{\mu} \bar{u}_{\nu} \delta g^{\mu \nu} \tag{67}
\end{equation*}
$$

Then since $\bar{u}_{\mu}=(a, \overrightarrow{0})$ the above expression gives

$$
\begin{align*}
0 & =\delta u_{\mu} \bar{u}_{0} \bar{g}^{\mu 0}+\bar{u}_{0} \delta u_{\nu} \bar{g}^{0 \nu}+\bar{u}_{0} \bar{u}_{0} \delta g^{00} \tag{68}\\
& =a \delta u_{\mu} \bar{g}^{\mu 0}+a \delta u_{\nu} \bar{g}^{0 \nu}+\Psi \tag{69}
\end{align*}
$$

But $\bar{g}^{\mu 0}$ is non-zero only for $\mu=0$ in which case $\bar{g}^{00}=-\frac{1}{a^{2}}$. Therefore the above expression gives

$$
\begin{equation*}
0=-\frac{2}{a} \delta u_{0}+2 \Psi \tag{70}
\end{equation*}
$$

and solving for δu_{0} we get

$$
\begin{equation*}
\delta u_{0}=a \Psi \tag{71}
\end{equation*}
$$

10.c On super-horizon scales we set $k^{2}=0$ so that the equation becomes

$$
\begin{equation*}
h^{(T)^{\prime \prime}}+2 \mathcal{H} h^{(T)^{\prime}}=0 \tag{72}
\end{equation*}
$$

The trivial solution is $h^{(T)}=$ const. We need the non-trivial solution. Let $A=h^{(T)^{\prime}}$. Then

$$
\begin{equation*}
A^{\prime}+2 \frac{a^{\prime}}{a} A=0 \tag{73}
\end{equation*}
$$

where we have used $\mathcal{H}=\frac{a^{\prime}}{a}$. Therefore the solution is

$$
\begin{equation*}
A=\frac{A_{0}}{a^{2}} \tag{74}
\end{equation*}
$$

so that the general solution is

$$
\begin{equation*}
h^{(T)}=h_{0}^{(T)}+A_{0} \int \frac{d \eta}{a^{2}} \tag{75}
\end{equation*}
$$

where $h_{0}^{(T)}$ is a constant (the trivial solution). We see that the non-trivial solution proportional to A_{0} is decaying so we can ignore it. Therefore, the tensor mode on super-horizon scales stays constant in time.

On sub-horizon scales the k^{2} term becomes important. The equation to be solved is that of a damped harmonic oscillator. Thus, we expect the solution to be oscillatory with a decaying amplitude.

