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Problem Session 1

Caveat: In some of these problems, you may have to make assumptions that are not given explicitly.
Be brave enough to throw away terms that you don’t think are important, and be wise enough to
go back later and ask whether it was justified.

Problem 1.1 - Hot gas in Galaxy Clusters

Observations of hot X-ray-emitting gas in Galaxy Clusters allows us to trace the underlying mass
density (and therefore estimate the mass of DM in clusters). The equation for hydrostatic equilib-
rium of the gas is:

dΦ

dr
=

GMtot(< r)

r2
= − 1

ρgas

dPgas

dr
. (1)

Assuming that the gas in the cluster is an ideal gas (with mean mass per gas molecule mg),
show that the enclosed mass can be written as:

Mtot(< r) = −kBT (r)r

Gmg

[
d ln ρgas(r)

d ln r
+

d lnT (r)

d ln r

]
. (2)

[Hint: recall that the equation of state for an ideal gas is pV = NkBT , where N is the total
number of gas particles.]

Solution 1.1

We start with the ideal gas equation:

PV = NkBT (3)

⇒ P = (N/V )kBT = (ρgas/mg)kBT . (4)

Calculating the derivative:

dPgas

dr
=

kB
mg

(
dρgas
dr

T + ρgas
dT

dr

)
(5)

=
kBT

mg

(
dρgas
dr

+
ρgas
T

dT

dr

)
. (6)

Using d lnx/dr = (1/x)dx/dr, we have:

1

ρgas

dPgas

dr
=

kBT

mg

(
d ln ρgas

dr
+

d lnT

dr

)
. (7)

With this, we finally have:

Mtot(< r) = −kBT (r)r

Gmg

[
d ln ρgas(r)

d ln r
+

d lnT (r)

d ln r

]
, (8)

where we have also used rdx/dr = dx/d ln r.
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Problem 1.2 - Density Profiles and Rotation Curves

The Hernquist density profile has the following form:

ρ(r) =
ρ0

(r/a)(1 + r/a)3
. (9)

(a) Calculate the enclosed mass as a function of radius Menc(r) for the Hernquist profile and find
an expression for the density parameter ρ0 in terms of the total mass of the halo and the scale
radius a.

(b) Write down the rotational velocity as a function of radius, for stars moving in a Hernquist
density profile. How does the rotational velocity at small radii change if we make the DM
halo more compact (at fixed mass)?

(c) At large radii, the Hernquist density profile is not as good a fit to simulated DM density
profiles as the NFW profile. Derive the scaling of the NFW rotation curve with r at large
radii. Show that this rotation curve decays more slowly than the Hernquist case.

[Hint: Here, you can take the limit r ≫ rs and just focus on the scaling with r. If you would
like to do this more carefully, you can model the NFW density profile as a broken power-law,
where the slope changes abruptly at r = rs.]

Solution 1.2

(a) The enclosed mass for the Hernquist profile is:

MH(r) =

∫ r

0

ρ0
(r/a)(1 + r/a)3

4πr2 dr . (10)

Here, it’s useful to change variables to x = r/a in order to render the integral dimen-
sionless:

MH(r) = 4πρ0a
3

∫ x

0

x

(1 + x)3
dx . (11)

By writing the integrand as x/(1 + x)3 = 1/(1 + x)2 − 1/(1 + x)3, we can perform the
integral straightforwardly to obtain:

MH(r) = 4πρ0a
3

[
−(1 + 2x)

2(1 + x)2

](r/a)
0

(12)

= 2πρ0a
3 x2

(1 + x)2
with x = r/a. (13)

The total mass of the halo is obtained taking x → ∞, to obtain M0 = 2πρ0a
3.

(b) The rotational velocity is given by:

vrot(r) =

√
GMenc(r)

r
(14)

=

√
GM0

r

(r + a)2
(15)
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At small radii, the rotational velocity goes as vrot(r) =
√
GM0r/a2. If we make the DM

halo more compact at fixed M0, we reduce a, increasing the rotational velocity close to
the centre. This makes sense: making the halo more compact increases the central mass
and therefore the rotational velocity.

(c) The NFW profile is given by:

ρNFW(r) =
ρs

(r/rs)(1 + r/rs)2
. (16)

At large radii, the density profile goes as:

ρNFW(r) → ρs
(r/rs)3

. (17)

The enclosed mass will receive a contribution from the central region of the DM halo.
Let’s call this central contribution Mc. At large radii r ≫ rs, the enclosed mass should
vary as:

Menc(r) ≈ Mc +

∫ r

rs

4πρs
r3s
r
dr (18)

= Mc + 4πρsr
3
s ln(r/rs) . (19)

At large radii then, the rotational velocity scales as vrot(r) ∼
√
ln(r)/r, dropping more

slowly than the Hernquist rotation curve (vrot ∼
√
1/r).

Here, it’s worth noting that the NFW profile does admit an analytic expression for the
mass profile (though the calculation isn’t particularly instructive):

MNFW(r) = 4πρsr
3
s

[
ln(1 + x)− x

1 + x

]
, (20)

with x = r/rs. In fact, the mass of NFW halos is formally infinite at large radii.

Problem 1.3 - Fermionic Dark Matter and the Alhambra

(a) How many people can comfortably fit inside the Alhambra Palace in Granada? [Hint: Con-
sider what a ‘comfortable’ distance between two people might be, and estimate the size of the
Alhambra.]

(b) What is the minimum mass of fermionic Dark Matter which can still explain the dense Dark
Matter halos in Dwarf Galaxies? [Hint: Consider what a ‘comfortable’ distance between two
fermions might be, and how densely packed they must be to achieve a given density. Here, it
might help to know that the Draco Dwarf Galaxy has a diameter of about 0.7 kpc and a DM
halo mass around 2× 107 M⊙.]

A more refined version of this argument has indeed been used to set a limit on the mass of
fermionic dark matter, known as the Tremaine-Gunn Bound.

[Hint: Some unit conversions that you might find useful are that h/c ≈ 4× 10−89 M⊙ pc and
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1M⊙ ≈ 1066 eV. Note that here we’re using a system of units where c = 1, such that we can
use eV both as a unit of energy and as a unit of mass.]

Solution 1.3

Of course, there are different ways to try and answer these questions, so your answers may
vary, but the important part of orders of magnitude.

(a) How much space does a person comfortably need? Let’s be nice and assume we won’t
be stacking people on top of each other. So let’s say that a person comfortably needs
one arm-span of space. We’ll suggestively call this a person’s ‘Compton Armlength’
λ ∼ 2m. What is the area of the Alhambra? A sensible guess might be A ∼ L2, with
L = 500m. The maximum comfortable number density of people is n ∼ 1/λ2, giving a
total of N = n × A = (L/λ)2 ≈ 62, 500. A little googling suggests that the Alhambra
gets around 8,000 visitors a day, so they must have plenty of space.

(b) Fermionic particles obey an exclusion principle, meaning that two identical particles
cannot occupy the same state. A sensible estimate for when two particles start to
‘overlap’ would be if their Compton wavelength λc = h/(mfc) is comparable to their
separation. In fact, we should be a bit more careful and look at the full density of states
available in phase space, because the particles could have the same position but different
momenta. But this will be an okay first estimate.

So let’s say that each Fermion of mass mf should be separated by at least λc = h/(mfc),
giving a number density of n ∼ 1/λ3

c and a maximum mass density ρf ∼ mf/λ
3
c . For

the Draco Dwarf galaxy, the average density of the DM profile can be estimated as:

ρDraco ∼ M/R3 ∼ 10−2 M⊙/pc
3 , (21)

where we’ve used M ≈ 2 × 107 M⊙ and R = 0.7 kpc. Setting ρf ∼ ρDraco, we can infer
the minimum fermion mass as:

mf ≳

(
h3ρDraco

c3

)
. (22)
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Plugging in the unit conversions given in the question, we obtain:

mf ≳ 0.1 eV . (23)

In fact, the true bound from phase space arguments is a few orders of magnitude stronger
(at the level of keV), but this isn’t too bad for a rather simple back-of-the-envelope
calculation.

Problem 1.4 - Freeze-out of Dark Matter

For DM particles initially in thermal equilibrium in the early Universe, the evolution of their number
density nχ can be described by the Boltzmann equation:

ṅχ + 3Hnχ = −⟨σχχ̄v⟩
[
n2
χ − nχ,eq

2
]
. (24)

(a) Transform the Boltzmann equation into the Riccati Equation for the Yield Y = nχ/s:

dY

dx
= − λ

x2

[
Y (x)2 − Yeq(x)

2
]
, (25)

where x = mχ/T and s = (2π2/45)g⋆sT
3 is the entropy density of the Universe. Give an

expression for λ in terms of mχ, ⟨σχχ̄⟩ and H(T = mχ).

[Hint: recall that T ∝ 1/a and that in radiation domination, we have H(T ) ∝ T 2.]

(b) Assuming that after freeze-out xf the DM number density is much larger than the equilibrium
number density, integrate the yield from xf to today and find an expression for the present
day yield Y (x0) in terms of xf and λ.

(c) Show that (assuming xf doesn’t vary too much) the relic DM density is independent of the
DM mass and scales as ⟨σv⟩.

Solution 1.4

(a) We begin with the Boltzmann equation:

ṅχ + 3Hnχ = −⟨σχχ̄v⟩
[
n2
χ − nχ,eq

2
]
. (26)

First, let’s change our derivative with respect to time into a derivative with respect to
x = mχ/T :

dnχ

dx
=

dnχ

dt

[
dx

dt

]−1

. (27)

We need to evaluate:

dx

dt
= −mχ

T 2

dT

dt
= −x

1

T

dT

dt
. (28)

Let’s write T = T0/a. We also write H = H(T = mχ)(T/mχ)
2, which is valid during

radiation domination. Then we have:

dT

dt
= −(T0/a

2)ȧ = −TH(T ) . (29)
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With this, we find dx/dt = xH(T ), and therefore:

dnχ

dx
=

1

Hx

dnχ

dt
. (30)

We’ll now transform from nχ to Y = nχ/s. We have:

dY

dx
=

1

s

dnχ

dx
− nχ

s2
ds

dx

=
1

s

dnχ

dx
+ 3

nχ

sx

=
1

Hsx

dnχ

dt
+ 3

nχ

sx

=
1

Hsx

(
dnχ

dt
+ 3Hnχ

)
,

(31)

where in the second line we’ve used the straightforward relation that ds/dx = (ds/dT )×
(dT/dx) = −3s/x and in the third line we’ve substituted from Eq. (30). The sharp reader
will now notice that the term in brackets in the last line of Eq. (31) is simply the left
hand side of the Boltzmann equation, Eq. (26). Substituting for the right hand side, we
obtain:

dY

dx
=

1

Hsx

(
−⟨σχχ̄v⟩

[
n2
χ − nχ,eq

2
])

= −⟨σχχ̄v⟩s
Hx

[
Y 2 − Yeq

2
]

= −
⟨σχχ̄v⟩m2

χ

H(T = mχ)T 2x

(
2π2

45
g⋆,sT

3

)[
Y 2 − Yeq

2
]

= −
⟨σχχ̄v⟩m3

χ

H(T = mχ)

(
2π2

45
g⋆,s

)
1

x2

[
Y 2 − Yeq

2
]
.

(32)

This is the Riccati Equation, with:

λ =

(
2π2

45
g⋆,s

) ⟨σχχ̄v⟩m3
χ

H(T = mχ)
. (33)

(b) After freeze-out, the yield is always much larger than the equilibrium yield, meaning
that the Riccati Equation reduces to:

dY

dx
= − λ

x2
Y (x)2 . (34)

We can rearrange and integrate explicitly:∫ Y (x0)

Y (xf )

1

Y 2
dY = −

∫ x0

xf

λ

x2
dx (35)

⇒
[

1

Y (xf )
− 1

Y (x0)

]
= λ

[
1

x0
− 1

xf

]
. (36)

6



Freeze-out occurs deep in the radiation era, so xf ≪ x0, and we can neglect the first
term on the right hand side. Perhaps harder to justify, we will also neglect Y (xf ). We
know that Y (x0) is smaller than Y (xf ), so the second term on the left hand side should
dominate. We can also inspect the numerical solution and see that Y (xf ) ≫ Y (x0).
With this, we get the approximate solution:

Y (x0) =
xf

λ
. (37)

(c) Noting that H(T ) ∝ T 2 deep in the radiation era, we see that H(T = mχ) ∝ m2
χ. With

this, we find that λ ∼ ⟨σχχ̄v⟩mχ.

The present day DM density goes as ρDM ∼ mχY (x0) ∼ mχxf/λ ∼ xf/⟨σχχ̄v⟩, almost
independent of the DM mass.

Problem 1.5 - Free-streaming

Let’s estimate the free-streaming scale for warm dark matter (WDM). We’ll estimate this as the
Dark Matter Jeans length, evaluated at Matter-Radiation Equality (MRE). The physical Jeans
length for a collisionless fluid with velocity dispersion σ is given by:

λJ(t) =

√
πσ(t)2

Gρ̄(t)
. (38)

The velocity dispersion of the Dark Matter drops with the expansion of the Universe, according to
σ ∝ a−1, once the DM freezes out.

(a) Write down an expression for the velocity dispersion at MRE in terms of the Dark Matter
mass mχ, the cosmic temperature today T0 and the scale factor at MRE aeq. [Hint: We’re
assuming this is Warm Dark Matter, so let’s take xf = 1, corresponding to freeze-out while
just relativistic. In light of this, what is the DM velocity dispersion at the moment of freeze-
out?]

(b) Evaluate the physical Jeans length at MRE as a function of the DM mass, assuming T0 =
2.7K, zeq ≈ 3400 and ρeq = 3.3 × 10−19 g/cm3. [Hint: In the lectures, we’ve been fixing
Boltzmann’s constant kB = 1. You may have to re-insert the facts of kB to convert between
eV and K.]

(c) Convert this to the comoving Jeans length λcom
J = (aeq)

−1 λJ and compare with the expression
given during Lecture 1 for the damping scale of Warm Dark Matter.

Solution 1.5

(a) For Warm DM, we’ll take xf = 1, such that the DM freezes out at Tf = mχ. At this
point, we’ll assume that the DM is still relativistic, and from this moment on, its velocity
dispersion decays towards being non-relativistic. So we’ll assume σ ∼ c at Tf . At MRE,
the velocity dispersion is σ(teq) = c×(af/aeq) where af the scale factor at freeze-out. The
temperature scales as T (a) = (a0/a)T0, so we can write σ(teq) = c×(T0/Tf )×a−1

eq , where
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we’ve used that a0 = 1. Finally, setting Tf = mχ, we have σ(teq) = c× (T0/mχ)× a−1
eq .

(b) The physical Jeans length is at MRE is then:

λJ(teq) = (1 + zeq)
kBT0

mχ

√
πc2

Gρ̄eq
. (39)

Here, we’ve replaced aeq = (1 + zeq)
−1 and we’ve re-inserted a factor of kB = 8.6 ×

10−5 eV/K such that mχ/kB is a temperature.

Substituting in the values given in the question, we find:

λJ(teq) ≈
(
keV

mχ

)
51 pc . (40)

Indeed, this corresponds to the physical length scales on which we might want to suppress
power (e.g. Dwarf Galaxy scales, and the centres of galaxies).

(c) The comoving Jeans Length is:

λcom
J = (1 + zeq)λJ(teq) =

(
keV

mχ

)
0.17Mpc . (41)

This is not so far from the more detailed estimate given in the lecture:

RS ≈ 0.47

(
keV

mχ

)1.15

Mpc . (42)

One possible source of the slightly different scaling with mχ is that we have made a
very simple assumption about the freeze-out time Tf = mχ, while in reality, xf varies
(slowly) with the DM mass.
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Problem Session 2

In the first three problems, we will attempt to derive constraints on the Dark Matter self-annihilation
cross-section ⟨σv⟩ based on observations of the (completely fictional) Dwarf Galaxy ‘Tapa-5’.
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Tapa-5 Dwarf Galaxy
450 Gaia radial velocity estimates

Figure 1: Estimates of the line of sight velocity dispersion σlos for the (completely fictional) Tapa-5
Dwarf Galaxy. The dashed blue line is the result of a fit of the form σ2

los = σ2
0 [a/(r + a)]. The

scale parameter is fixed to a = 100 pc and the fit gives a value of the normalisation factor of
σ2
0 = 430 (km/s)2.

Problem 2.1 - Dynamical Jeans Equations

(a) Show that the spherical Jeans equation:

∂
(
n(r)σ2

r

)
∂r

+

[
2σ2

rβ(r)

r
+

∂Φ

∂r

]
n(r) = 0 , (43)

is satisfied if the DM halo in Tapa-5 has a Hernquist density profile:

ρH(r) =
M0

2πa3
1

(r/a)(1 + r/a)3
, (44)

and find an expression for σ2
0 in terms of M0 and a.

[Hint: Here, you can assume that the potential is dominated by the DM halo, and you may
find useful the expression for the enclosed mass of a Hernquist profile: M(r) = M0r

2/(a+ r)2

(see solution to Problem 1.2). For simplicity, you can assume that β(r) = 0, σr = σlos and
that the stellar density n(r) is constant.]

(b) Calculate the numerical value of the total mass of the DM halo M0.
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Solution 2.1

(a) Let’s begin by simplifying things. We’ll assume that the system has an isotropic velocity
distribution, such that β(r) = 0. We’ll also set σr ∼ σlos (which shouldn’t be too bad an
approximation for isotropic systems). Finally, the number density of stars (which act as
tracers of the underlying DM gravitational potential) is taken to be constant, so we can
take it outside the derivative and ultimately cancel it from both terms in the Spherical
Jeans Equation.

This leaves us with a rather simple form:

∂σ2
los

∂r
= −∂Φ

∂r
. (45)

The velocity dispersion has the form:

σ2
los(r) = σ2

0

a

a+ r
(46)

⇒ ∂σ2
los

∂r
= −σ2

0

a

(a+ r)2
. (47)

On the right hand side of the Jeans Equation, we just have the derivative of the grav-
itational potential, which we identify as the gravitational acceleration due to the mass
enclosed at a given radius.a We thus have:

−∂Φ

∂r
= −GM(r)

r2
= − GM0

(a+ r)2
. (48)

From this, we can make the identification:

σ2
0 =

GM0

a
. (49)

(b) We can now calculate the total mass as:

M0 = aσ2
0/G ≈ 107 M⊙ , (50)

where we’ve used the numerical value G ≈ 4.3× 10−3 (km/s)2pcM−1
⊙ .

aAnother way to see this is that the gravitational potential is calculated by integrating the gravitational
force from infinity to some point r. The derivative of the potential then is simply the gravitational force. Note
that in a spherically symmetric system, this force only depends on the mass interior to the radius r.

Problem 2.2 - J-factor for Tapa-5

The J-factor is defined as:

J(∆Ω) ≡
∫
∆Ω

dΩ

∫
los

ρ2χ(r(ℓ, θ)) dℓ = 2π

∫ θmax

0

sin θ dθ

∫
los

ρ2χ(r(ℓ, θ)) dℓ (51)

Rather than doing the full calculation, we’ll do a simple estimate for Tapa-5.
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(a) Calculate the value of ⟨ρ2χ⟩, where the average is taken over the volume r ≤ a:

⟨ρ2χ⟩ =
1

V

∫ a

0

ρ2χ(r) d
3r . (52)

[Hint: In this region, you can assume ρ ∝ 1/r].

(b) Replacing ρ2χ → ⟨ρ2χ⟩ in Eq. (51), estimate the J-factor for Tapa-5 out to an opening angle of
θmax = 0.5◦.

[Hint: Here, you can assume that Tapa-5 is at a distance D = 30 kpc ≫ a. With this you can
assume that θ ≪ 1, such that the line-of-sight integrals is dominated by trajectories passing
through the centre of the Dwarf. In any case, don’t worry too much about the exact geometry
of the integral.]

Solution 2.2

(a) Here, the idea to to replace the DM halo with a constant density region with radius r
and density squared ⟨ρ2χ⟩. The mean density squared of the Hernquist halo (assuming
in the inner region that ρ ∼ 1/r) is:

⟨ρ2χ⟩ =
1

V

∫ a

0

ρ20
a2

r2
d3r (53)

=
3

4πa3

∫ a

0

ρ20
a2

r2
4πr2dr (54)

=
3ρ20
a3

∫ a

0

dr (55)

= 3ρ20 . (56)

Note that here we’ve been careful to include the volume element 4πr2 dr.

(b) We now replace ρ2χ → ⟨ρ2χ⟩ to obtain an expression for the J-factor:

J(∆Ω) = 6πρ20

∫ θmax

0

sin θ dθ

∫
dℓ . (57)

The final dℓ integral is over line-of-sight (los) distances ℓ which lie within the constant
density core of the DM halo (which in principle depends also on θ). Because we’ve
assumed that the halo density is constant, this just reduces to an integral over the
volume of the halo enclosed with θ < θmax. The geometry is illustrated in Fig. 2.

We don’t want to worry too much about the specifics of this geometric integral (the exact
calculation is a pain). There are a few ways to do this, but let’s notice that a ≪ D and
θmax ≪ 1, meaning that the lines of sight which pass through the DM halo are roughly
parallel. Expanding sin θ ≈ θ, we’ll then perform the two integrals separately:

J(∆Ω) = 6πρ20

[∫ θmax

0

θ dθ

]
×

[∫ D+a

D−a

dℓ

]
. (58)
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Geometrically, this is equivalent to approximating the volume as a cylinder of length 2a
(the diameter of the uniform density halo) and cross-sectional radius R ≈ θmaxD.

Performing the integrals straightforwardly, we obtain:

J(∆Ω) ≈ 6πρ20aθ
2
max =

3

2π
θ2maxM

2
0 /a

5 . (59)

Substituting the opening angle in radians θmax = 0.5◦/180◦ ≈ 3× 10−3, we obtain:

J ≈ 0.04M2
⊙ pc−5 ≈ 1.6× 1020 GeV2 cm−2 . (60)

Note that this is a couple of orders of magnitude larger than typical Dwarf J-factors.

Figure 2: Geometry for calculating the J-factor.

Problem 2.3 - Gamma-ray constraints

Fermi observes in a region of angular size 0.5◦ around Tapa-5. The resulting upper limit on the
gamma-ray flux above 1GeV is Φγ ≳ 10−8 cm−2 s−1.

Assuming DM particle of 100GeV annihilating directly into a pair of gamma rays, convert the
flux upper limit into an upper limit on the DM annihilation cross section ⟨σv⟩ (in units of cm3 s−1).

[Hint: Some unit conversions that you may find useful: 1M⊙ ≈ 1057 GeV and 1 pc ≈ 3 ×
1018 cm.]

Solution 2.3

(a) The prompt gamma-ray annihilation flux is given by:

dΦγ

dEγ
=

1

4π

⟨σannv⟩
2m2

χ

dNγ

dEγ
×

∫
∆Ω

dΩ

∫
los

ρ2χ(r(ℓ, θ)dℓ ≡
1

4π

⟨σannv⟩
2m2

χ

dNγ

dEγ
J . (61)

We have a constraint on the DM flux above 1GeV, so let’s integrate over gamma-ray
energies:

Φ>1GeV =
2

4π

⟨σannv⟩
2m2

χ

J , (62)
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where the factor of 2 comes from
∫
dNγ/dEγ dEγ = 2 (i.e. 2 photons per annihilation).

Note that for annihilation into two photons, each gamma ray carries away an energy
Eγ = mχ, so the integral over energies Eγ > 1GeV includes these photons for the
assumed DM mass of 100GeV.

Rearranging, we find:

⟨σannv⟩ ≲
4πm2

χΦ>1GeV

J
. (63)

Substituting the value of J given in the previous problem and the WIMP mass of mχ =
100GeV, we obtain:

⟨σannv⟩ ≲ 7.7× 10−24 cm3 s−1 . (64)

Note that this is a bit weaker that real constraints (partly because the value we assumed
for the limit on the gamma ray flux was a few orders of magnitude weaker than more
realistic observed values).

Bonus Problem - Bird Strikes and Primordial Black Holes

(a) Occasionally, birds will hit aircraft during take-off or landing. Estimate the probability of
such a ‘bird strike’ during a single commercial flight. What is the rate of bird strikes per day
across the world?

(b) Primordial Black Holes (PBHs) which cross stars can be captured and eventually can consume
and destroy the star. If all of the Dark Matter in the Universe is in the form of PBHs with
mass MPBH = 10−15 M⊙, what is the probability that the Sun will be destroyed in its lifetime?

[Hint: the local DM density close to the Sun is about 10−2 M⊙/pc
3.]

Bonus Solution

(a) Let’s start with a very simple estimate and see where we go wrong. The number of birds
on Earth is probably around Nb ≈ 1010 (one bird per person?). The radius of the Earth
is RE ≈ 6000 km, giving a surface area of AE ≈ πR2

E ≈ 108 km2. If we distribute the
birds uniformly across the surface of the Earth, we get a bird surface density of Nb/AE.
The surface area of a runway (roughly the area covered by an aircraft taking off) must
be about Aa ≈ 50m × 2 km ≈ 10−1 km. This area contains AaNb/AE, coming out at
about 10 bird strikes per take-off!

This is clearly too many, and the thing that’s missing is the vertical direction! Let’s
also distribute our birds vertically in the lowest L = 1km of the atmosphere. The
volumetric bird density is then Nb/(AEL). The cross sectional area of an aircraft is
perhaps 100m2 = 10−4 km2, meaning that as it takes off along a 1 km runway, it sweeps
out a volume Va ≈ 10−4 km2. This gives a bird strike probability of Va×Nb/(AEL) ≈ 1%.
This seems a bit more reasonable (though perhaps still a bit high; I guess birds must
not be uniformly distributed...).

Some quick googling suggests that there are about 100,000 flights per day, suggesting
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around 1000 bird strikes per day. More googling suggest that there are about 50 bird
strikes per day in the USA alone, so maybe our estimate is not so far off...

(b) As with birds, so with PBHs. Let’s take our PBHs and distribute them uniformly. If
the local DM density is ρ0 ≈ 10−2 M⊙/pc

3, this gives us a number density nPBH =
ρ0/MPBH ≈ 1013 pc−3.

Now what is the volume swept out by the Sun during its lifetime of t⊙ ≈ 5 × 109 yr ≈
1017 s? The cross sectional area of the Sun is around A⊙ ≈ (106 km)2 = 1012 km2.
The velocity of the Sun is around v⊙ = 200 km/s, such that it sweeps out a volume
V = A⊙ × v⊙ × t⊙ ≈ 1031 km3 during its lifetime.

This means that a total of nPBH×V ≈ 1044 (km/pc)
3 ≈ 3000 PBHs should pass through

the Sun during its lifetime! In fact, it turns out that even if a PBH passes through a star,
it generally does not lose enough energy to be captured (i.e. the capture probability is
much smaller than 1). So while this estimate of the number of PBH encounters seems
troubling, in reality we don’t need to worry too much about the Sun being swallowed by
a PBH.
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