High P_{τ} physics at the LHC - Lecture I (Introduction and LHC accelerator)

Juraj Bracinik, Andrew Chisholm (University of Birmingham)

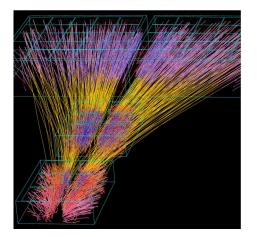
Warwick week, 12 April 2023

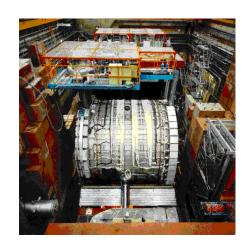
- Introduction
- LHC machine
- High P_T experiments Atlas and CMS
- Standard Model physics and BSM searches
- Higgs data analysis

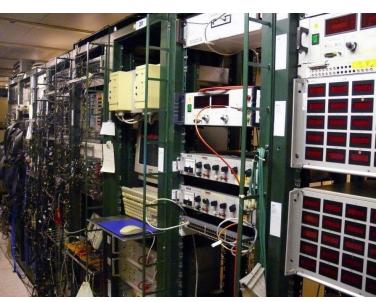
Introduction

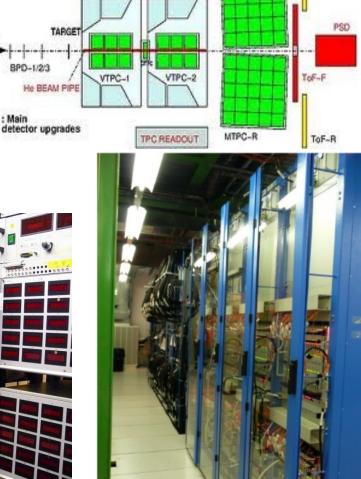
What are these lectures going to be?

- Introduction to the topics
- An overview, the topic is too broad to go into details
- Different people need to know different details, but an overview can be useful to everyone...
- Not too much maths, most of it just to give us feeling for orders of magnitude
- (maybe) a discussion ???!


Four lectures ...


Lecture 1 : Introduction to LHC physics, the LHC accelerator Lecture 2: General purpose experiments (ATLAS and CMS) Lecture 3: SM physics and searches Lecture 4: Higgs physics


<u>Please allow me to introduce myself ...</u>



13 m

VTX-2

VERTEX MAGNETS VTX-1 VI MTPC-L

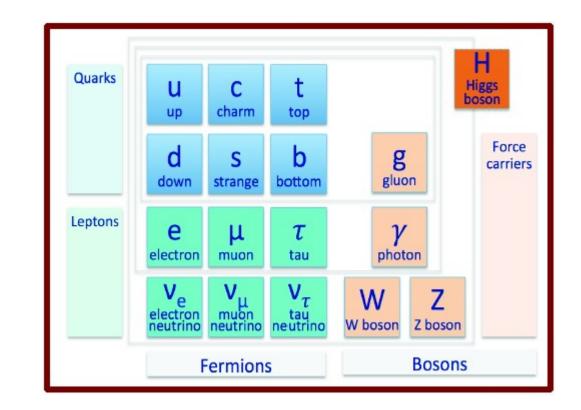
ToF-L

I work for ATLAS trigger, so naturally biased ...

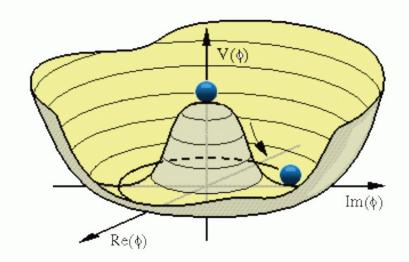
J. Bracinik

jb, Warwick week, April 2023

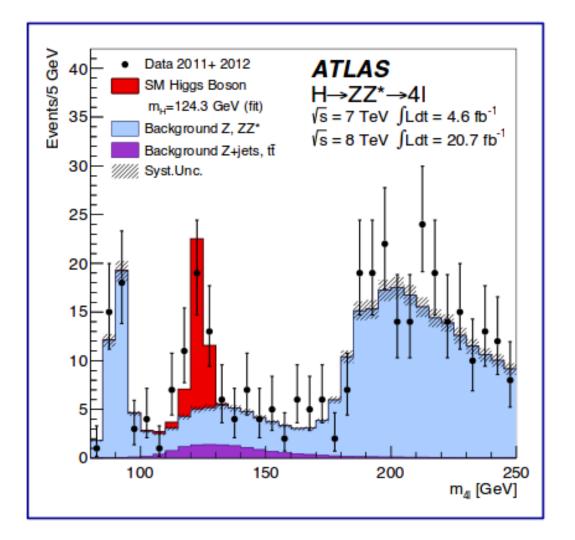
<u>Lecture 1- Introduction and</u> <u>the LHC</u>

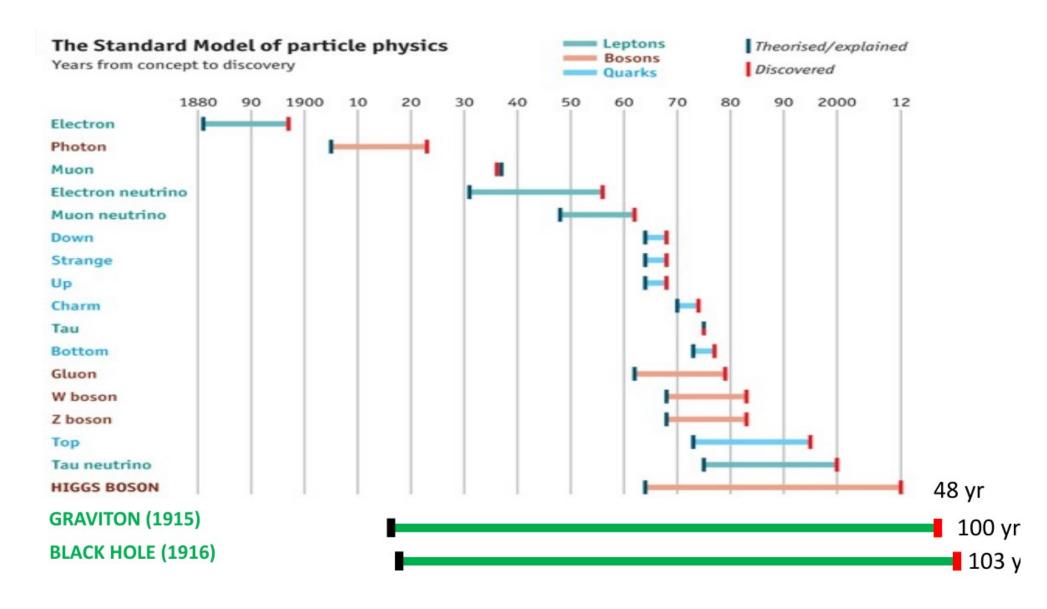

- Standard model of elementary particle physics and its Big Open Questions
- LHC machine:
 - General parameters
 - How are particles accelerated: RF
 - What keeps them running around?
 - Interaction points, that is where it all happens!
- The future of the LHC and beyond

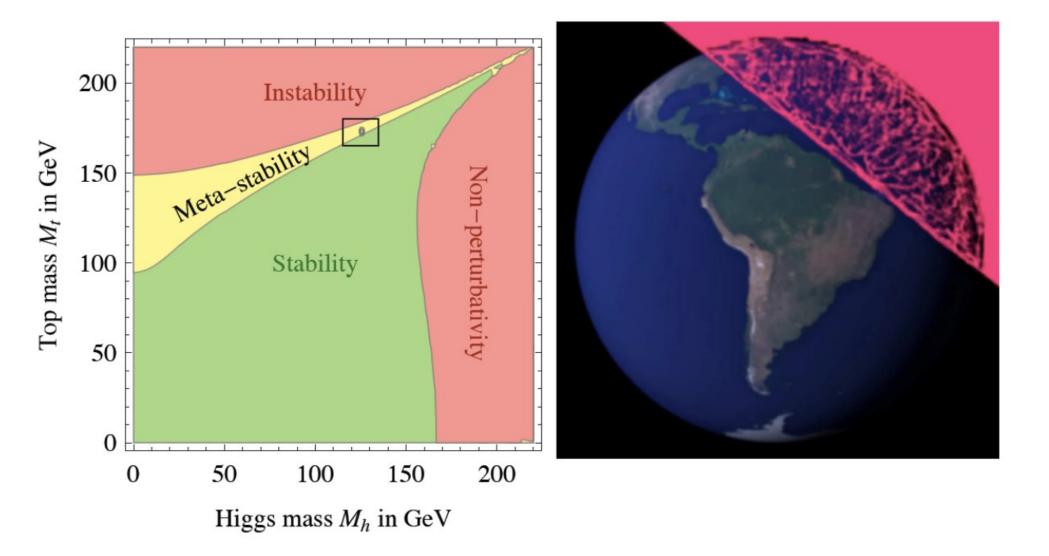
Standard model and its (standard) troubles


Standard model and standard (model) troubles

Standard Model describes all observed phenomena in Elementary particle physics

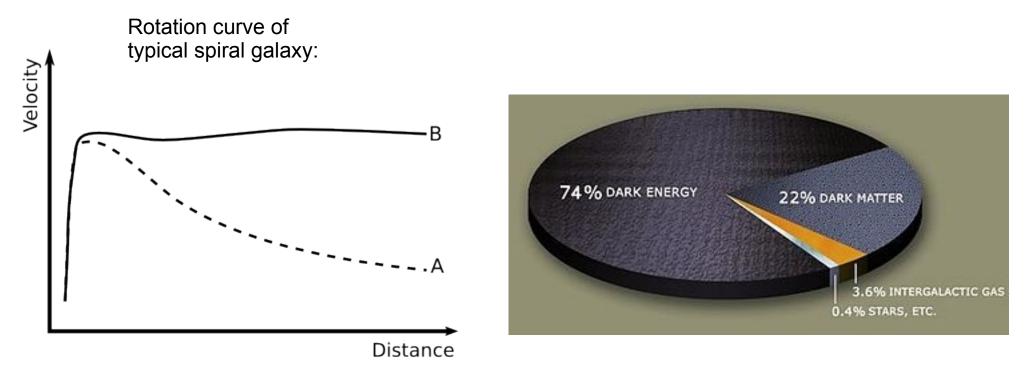

- 2 x 6 fundamental fermions - "particles of matter"
- 4 fundamental, spin 1
 bosons "particles of interaction"
- Language (mathematical) of SM: Local renormalizable Quantum Field Theory


- Quantum field theory with massive spin-1 boson is not renormalisable
- W and Z are very massive!
- Several attempts to solve this problem ...



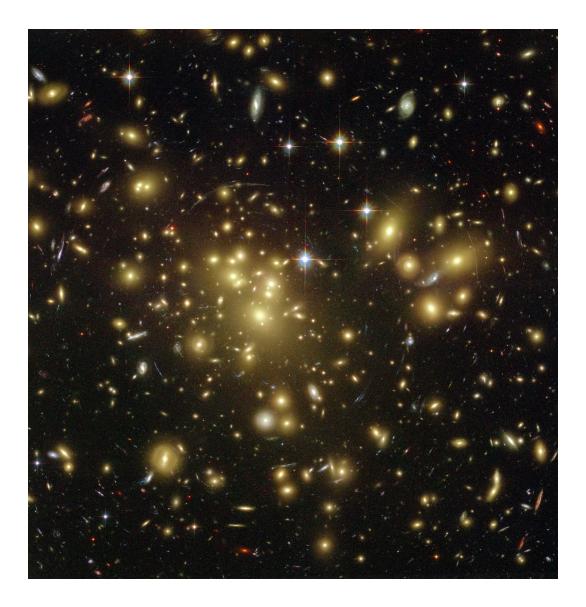
- The simplest model:
 - Postulate additional scalar field Higgs particle
 - It has nonzero vacuum expectation value
 - W and Z acquire mass in interaction with Higgs
 - γ remains mass-less
- Build LHC to check if this is the case (or not)
- Looks like this simple model is correct (or close ...) !

More details in Andy's lectures...

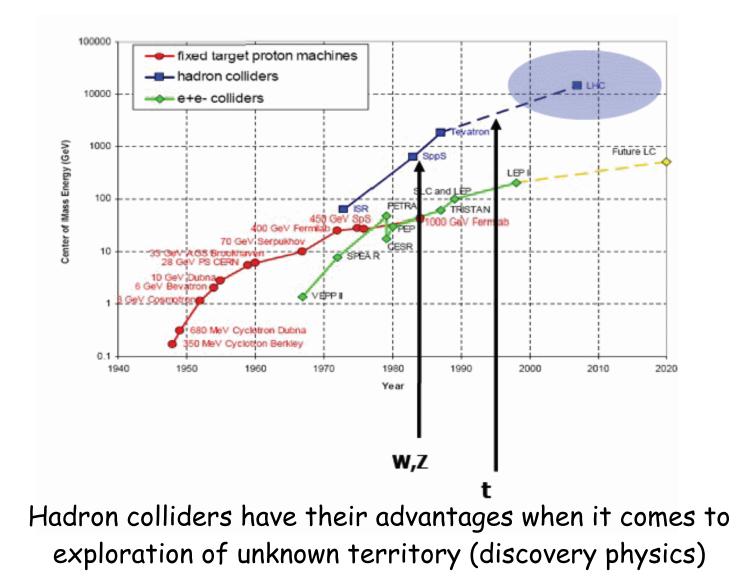


Parameters of the Standard Model [hide				
Symbol	Description	Renormalization scheme (point)	Value	
me	Electron mass		511 keV	
mμ	Muon mass		105.7 MeV	
mτ	Tau mass		1.78 GeV	
mu	Up quark mass	$\mu \over MS = 2 \text{ GeV}$	1.9 MeV	
m _d	Down quark mass	μ MS = 2 GeV	4.4 MeV	
ms	Strange quark mass	$\mu = 2 \text{ GeV}$	87 MeV	
mc	Charm quark mass	$\mu = m_c$	1.32 GeV	
ть	Bottom quark mass	$\mu = m_b$	4.24 GeV	
mt	Top quark mass	On shell scheme	173.5 GeV	
θ_{12}	CKM 12-mixing angle		13.1°	
θ23	CKM 23-mixing angle		2.4°	
θ_{13}	CKM 13-mixing angle		0.2°	
δ	CKM CP violation Phase		0.995	
g1 or g'	U(1) gauge coupling	$\mu = m_Z$	0.357	
g ₂ or g	SU(2) gauge coupling	$\mu = m_Z$	0.652	
g3 or g ₅	SU(3) gauge coupling	$\mu = m_Z$	1.221	
θqcp	QCD vacuum angle		~0	
v	Higgs vacuum expectation value		246 GeV	
mн	Higgs mass		125.09 ± 0.24 GeV	

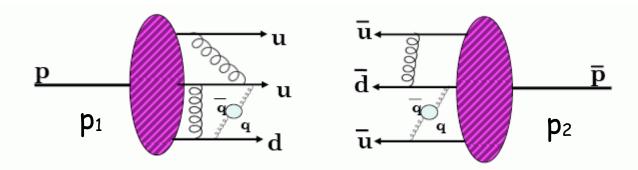
 Nineteen free parameters that need to be determined from the experiment!


Dark matter

We know there is a physics beyond Standard model!


Just need to look at the sky!

Dark matter

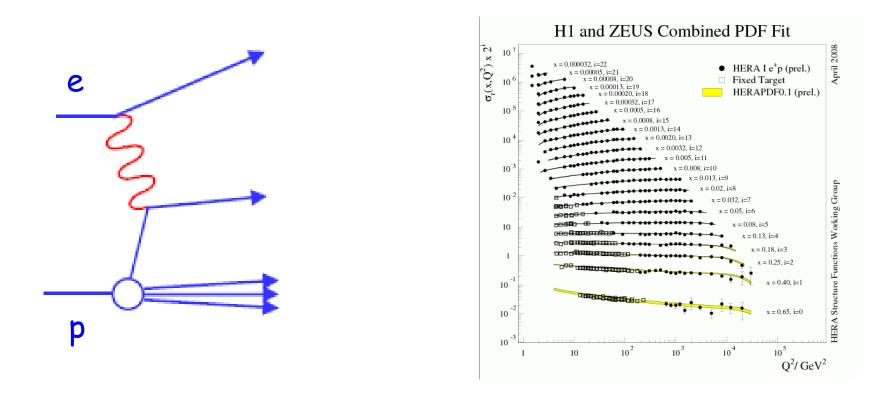


Basic kinematics of high energy hadron collisions

<u>One accelerator with TeV energy, please...</u>

Detailed look at high energy pp collision

- Protons at high energy behave as beams of pointlike particles partons
- Proton beam offers wide range of (elementary) collision energies
- Variable x (Bjorken x) gives fraction of proton energy carried by a parton:

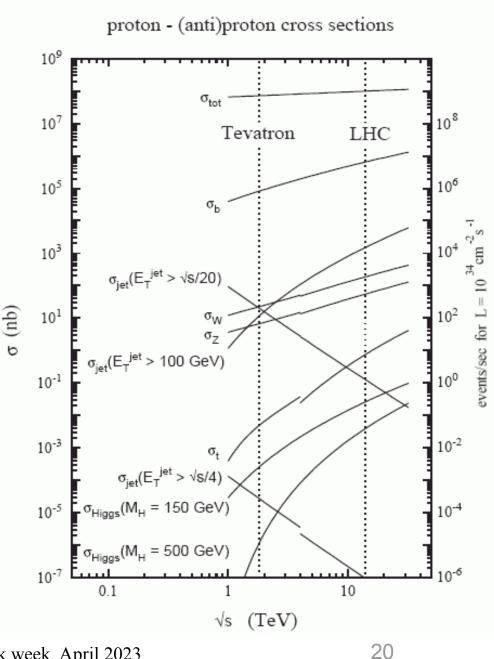

$$\hat{x} = \frac{P_{parton}}{P_{proton}}$$

Energy of (elementary) collision is then

$$\sqrt{s_{elementary}} = \hat{x}_1 \hat{x}_2 \sqrt{s} \qquad s = (p_1 + p_2)^2$$

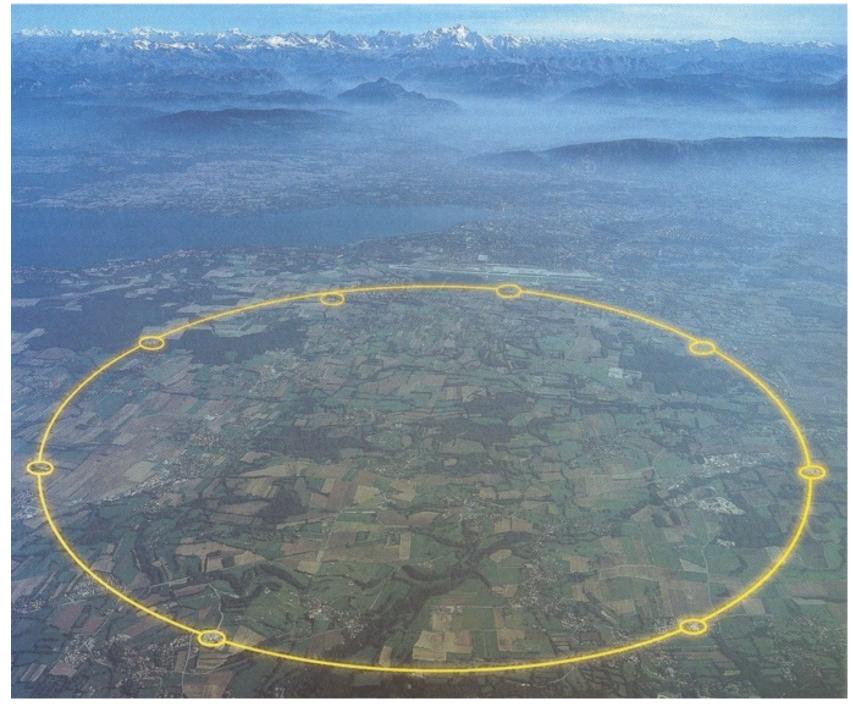
Proton colliders offer wide range of available center-of-mass energy for elementary collisions :-)

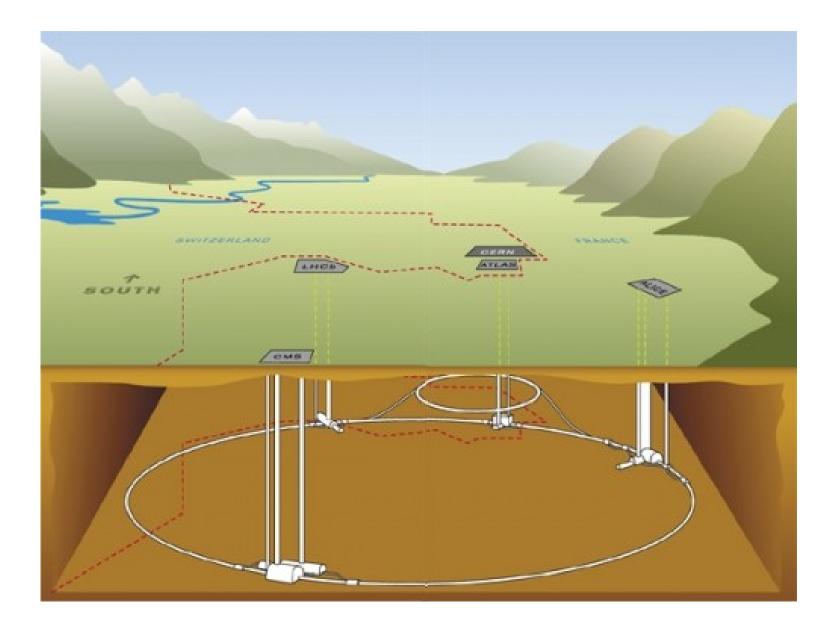
Structure of the proton I

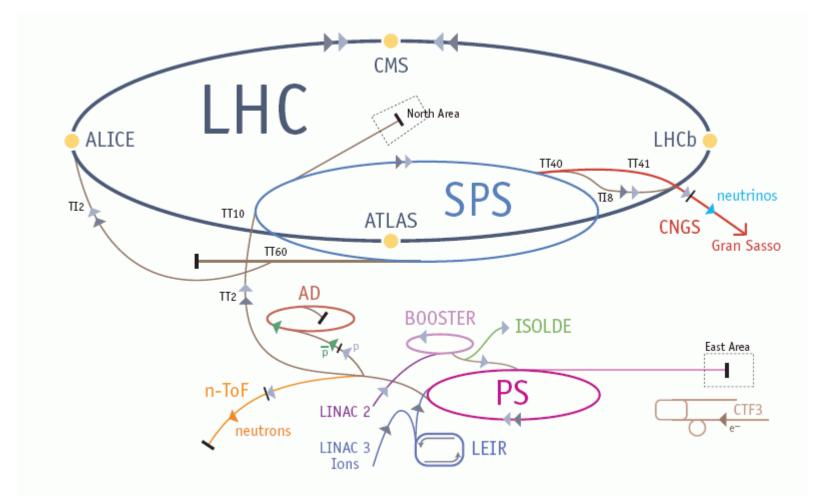

- Distribution of partons in the proton is well known!
- measured (mainly) in Deep Inelastic ep Scattering (DIS)
- DIS \u2274 elastic electron-quark scattering!
- Distribution of scattered electrons is very sensitive to distribution of partons in the proton

Luminosity

Energy is not enough, one needs luminosity, too...


 $N = \sigma \times L$


- N number of events (we want) σ – cross section (given by Nature) L – luminosity (parameter of an accelerator)
- Higgs couples mainly to particles with high mass, its cross section in pp collisions is rather small
- Need a machine with high luminosity !!!



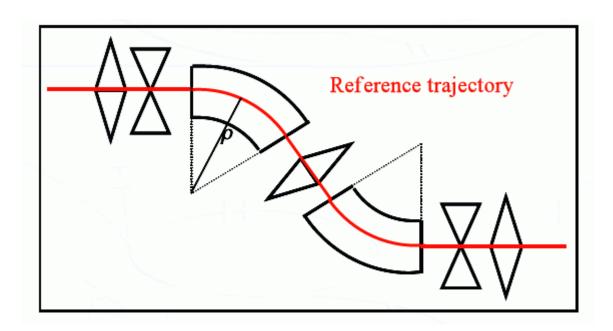
jb, Warwick week, April 2023

Introduction to the LHC

LHC nominal parameters

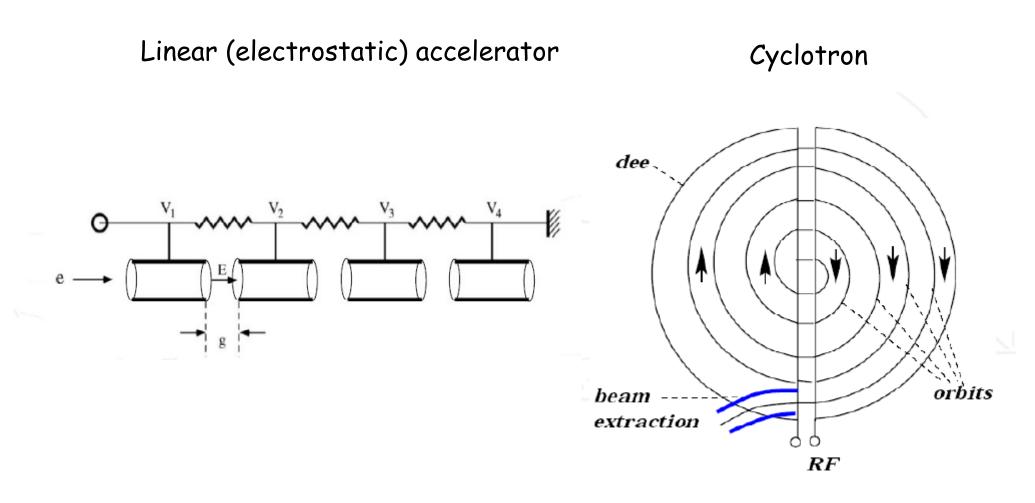
at collision energy

Particle type	p, Pb	
Proton energy E _p at collision	7000 GeV	
Peak luminosity (ATLAS, CMS)	1 x 10 ³⁴ cm ⁻² s ⁻¹	
Circumference C	26 658.9 m	
Bending radius p	2804.0 m	
RF frequency f _{RF}	400.8 MHz	
# particles per bunch n _p	1.15 x 10 ¹¹	
# bunches n _b	2808	

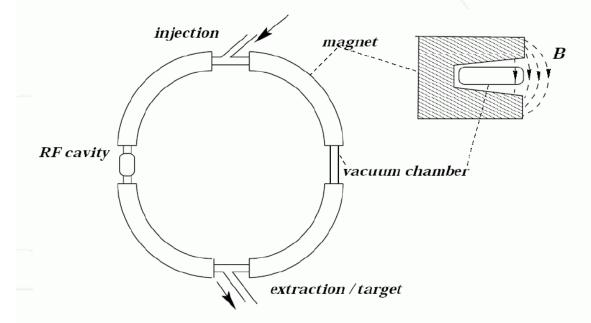

Particle accelerators

Accelerator: accelerate and steer particles (and collide them):

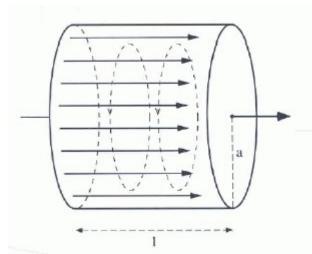
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) = \vec{F}_E + \vec{F}_B$$

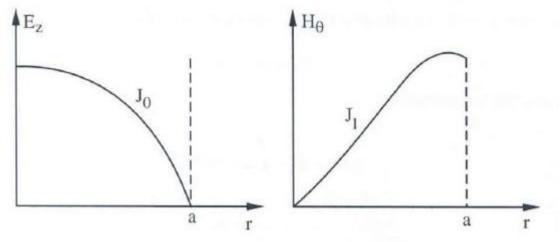

- Both F_E and F_B cause
 deflection:
- when v~c, 1T~ 3x10⁸ V/m
- Achievable E field ~ few MV/m
- Magnetic field is used in accelerators when possible (beam steering)

 $\vec{F}_{R} \perp \vec{v}$


Only electric field accelerates!

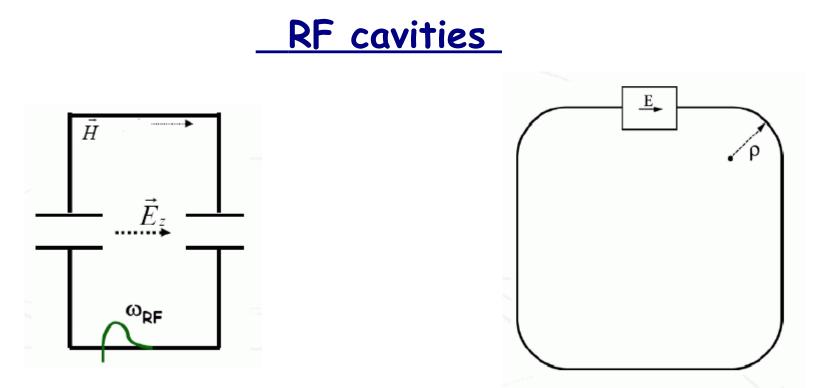
Accelerating particles


An important function of an accelerator is to accelerate ...


Cyclotron, betatron, synchrotron, oh my ...

- LHC is a synchrotron!
- (in fact most of high energy accelerators are synchrotrons, for example HERA, Tevatron, LEP, SPS, PS, ...)
- Means that particles follow the same (circular) trajectories, steered by magnets
- When accelerating, changing magnetic field
- Acceleration done by RF cavities
- Changing also frequency of accelerating (RF) field

Accelerating particles - RF cavities

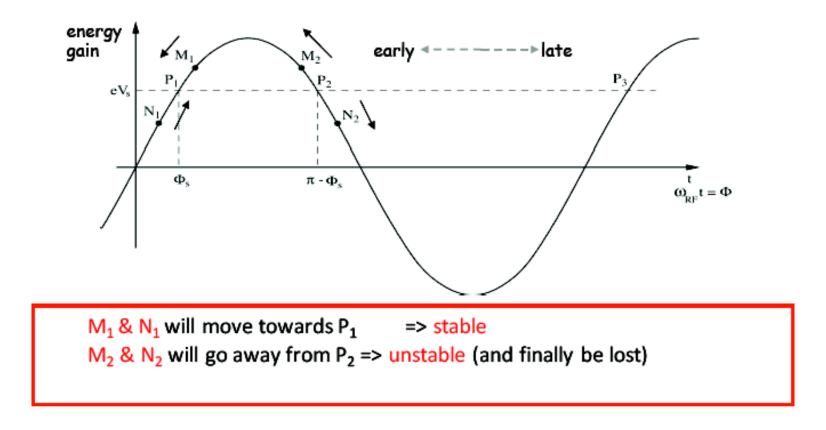


- In any closed metallic box it is possible to generate electromagnetic oscillations
- For example an ideal cylindric cavity
- Many (infinite number) of solutions for E and B - oscillating modes
- The fundamental mode normally used for acceleration is named TM₀₁₀
- Ez is constant in space along the axis of acceleration, z, at any instant

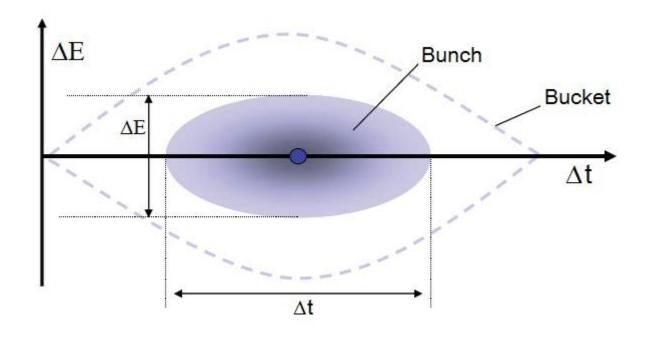
$$E_{z} = J_{0}(kr)$$

$$H_{\theta} = -\frac{j}{Z_{0}}J_{1}(kr)$$

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{c} \quad \lambda = 2,62a \quad Z_{0} = 3779$$

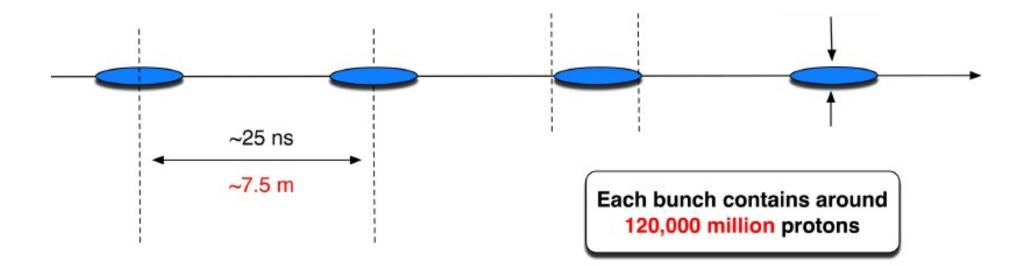


- RF power is fed into the cavity from RF power generators (for example Klystrons)
- RF power oscillates at desired frequency
- Good to have cavity with superconducting walls to minimize losses...
- Particles oscillating in the accelerator pass through the cavity many times, to be accelerated, they need to come at fixed phase
 - Beam is composed of bunches with a large number of particles


Phase stability and bunches I

Assume the situation where energy increase is transferred into a velocity increase

Particles P₁, P₂ have the synchronous phase.



Phase stability and bunches II

- Area of stability in phase space bunches
- Energy and phase oscillate around nominal values synchrotron oscillations
- For small amplitudes: Harmonic Oscillator
- Higher amplitudes: non-linearities

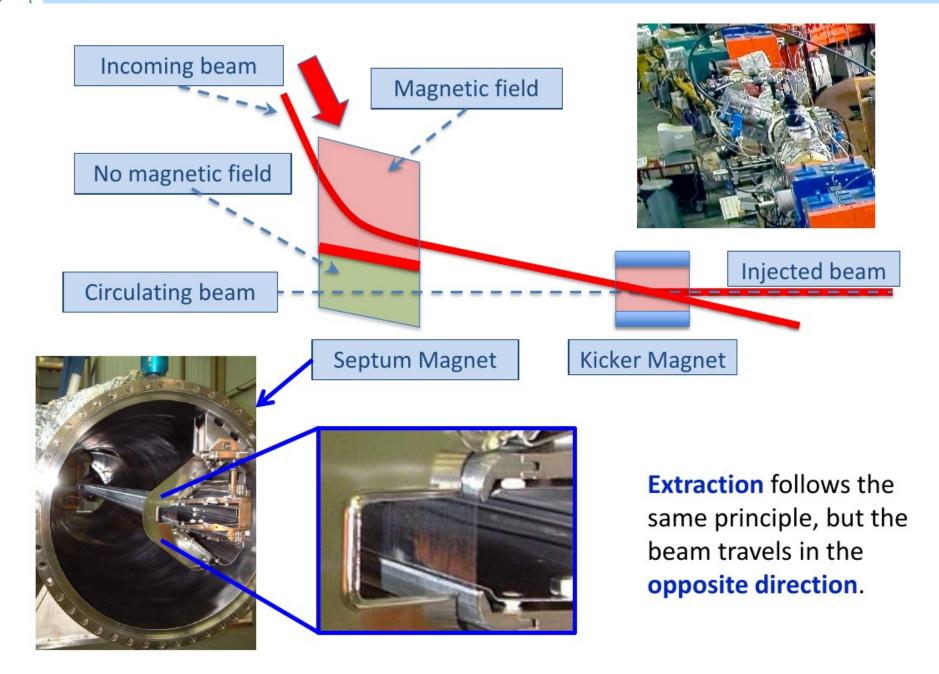
Phase stability and bunches III

Around 2800 filled bunches per beam

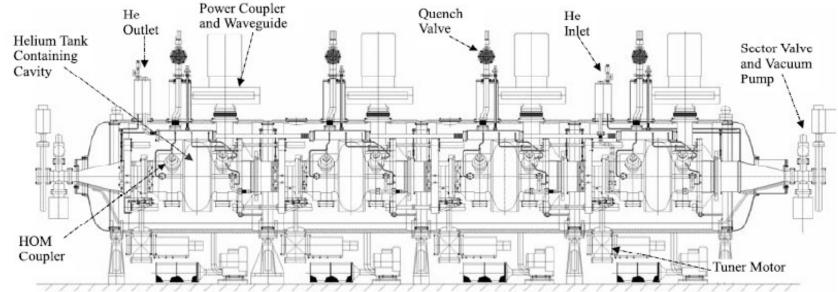
Bunch length ~10cm

Maximum transversal size (far from experimental collision points):

- ~1mm at injection energy
- ~0.5 mm at full energy


LHC bunch structure - 2016

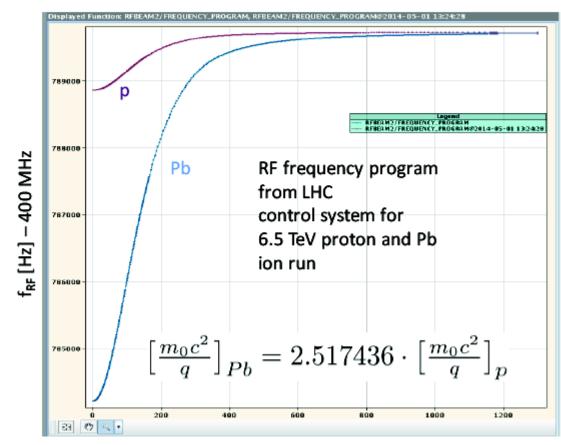
- 25 ns bunch spacing
- Nominal bunch intensity 1.15 x 10¹¹ protons per bunch



8

Injection and Extraction

Accelerating particles - LHC cavities


- 400 MHz superconducting cavity system
- 8 single-cell cavities per ring
- 1 klystron per cavity
- 4 cells are in one cryostat (4.5° K)

Maximum field 5 MV/m Energy gain/turn ~0.5 MeV RF frequency varies from 400.789 MHz (450 GeV) to 400.790 MHz (7 TeV)

The LHC can accelerate protons and heavier ions. In the past: runs with $p^{\scriptscriptstyle +}$ and $Pb^{82{\scriptscriptstyle +}}$

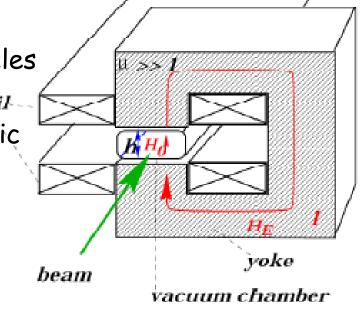
For the ramp of lead ions larger frequency swing

- Slow ramp (> 15min)
- Small energy gain/turn (~500keV)

<u>Accelerating particles - LHC cavities</u>

	Unit	Injection	Collision
		450 GeV	7 TeV
Bunch area $(2\sigma)^*$	eVs	1.0	2.5
Bunch length $(4\sigma)^*$	ns	1.71	1.06
Energy spread $(2\sigma)^*$	10^{-3}	0.88	0.22
Intensity per bunch	10 ¹¹ p	1.15	1.15
Number of bunches		2808	2808
Normalized rms transverse emittance V/H	μm	3.75	3.75
Intensity per beam	А	0.582	0.582
Synchrotron radiation loss/turn	keV	-	7
Longitudinal damping time	h	-	13
Intrabeam scattering growth time - H	h	38	80
- L	h	30	61
Frequency	MHz	400.789	400.790
Harmonic number		35640	35640
RF voltage/beam	MV	8	16
Energy gain/turn (20 min. ramp)	keV		485
RF power supplied during acceleration/ beam	kW	~	- 275
Synchrotron frequency	Hz	63.7	23.0
Bucket area	eVs	1.43	7.91
RF (400 MHz) component of beam current	Α	0.87	1.05

 Table 4.1: The Main Beam and RF Parameters.


* The bunch parameters at 450 GeV are an upper limit for the situation after filamentation, ~ 100 ms after each batch injection. The bunch parameters at injection are described in the text.

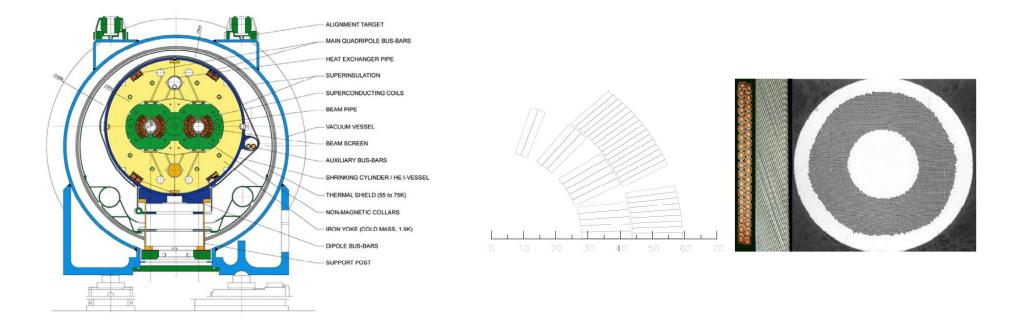
<u>Keeping particles on circle – dipoles I</u>

- Circular accelerator deflecting forces are needed
 - Usually done with pieces of circular trajectory
 - Straight sections used to accelerate particles
 (RF) and to collide them (detectors)
 - In circular arc section bending by magnetic fields
- Dipole magnets:

$$\frac{1}{\rho} = \frac{eB}{p}$$

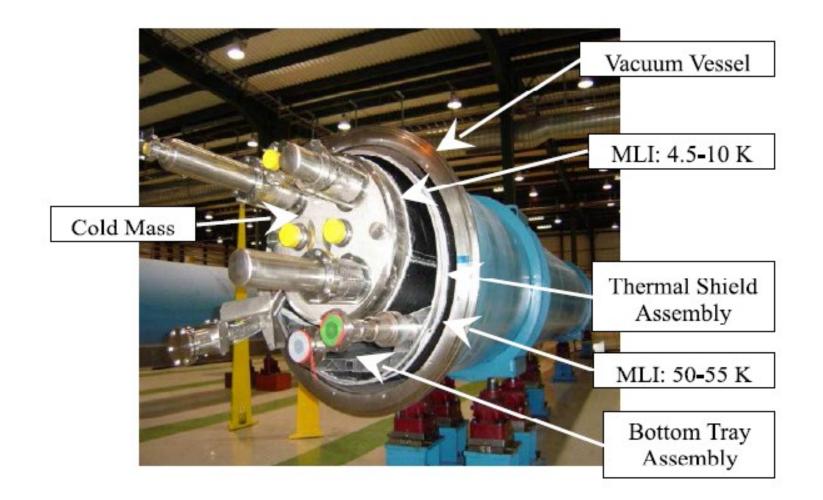
$$\frac{1}{\rho}[m^{-1}] = 0.3 \frac{B[T]}{p[GeV/c]}$$

<u>Keeping particles on circle – dipoles II</u>


Assuming:

Gives:

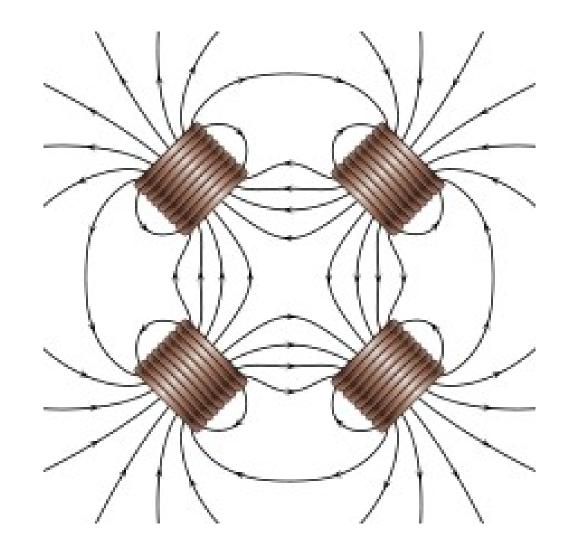
$$\rho = 2.53 \text{ km} \longrightarrow 2\pi \rho = 17.6 \text{ km} \approx 66\%$$


- Need strong magnets to bend high energy beam!
- Most of LHC circumference used by dipole magnets!
- In fact this limits maximum energy of LHC beams!

LHC dipole magnets

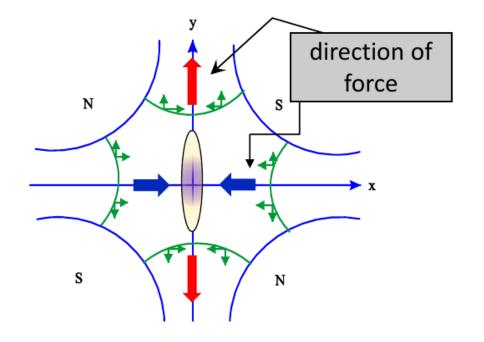
- Edge of present technology
- NbTi superconductors used at 2° K
- Magnetic fields up to 8 T
- Two-in-one (twin bore) design for two beam in common cryostat
- 1232 dipole magnets, each 15m long

<u>Keeping particles on circle – dipoles</u>

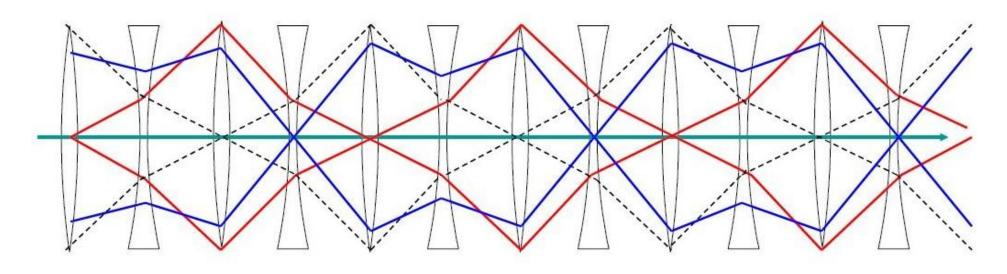


	Value	Unit
Injection field (0.45 TeV beam energy)	0.54	Т
Current at injection field	763	Α
Nominal field (7 TeV beam energy)	8.33	Т
Current at nominal field	11850	Α
Inductance at nominal field	98.7	mH
Stored energy (both apertures) at nominal field	6.93	MJ
Ultimate field	9.00	Т
Current at ultimate field	12840	Α
Stored energy (both apertures) at ultimate field	8.11	MJ
Maximum quench limit of the cold mass (from short samples)	9.7	Т
Operating temperature	1.9	K
Magnetic length at 1.9 K and at nominal field	14312	mm
Distance between aperture axes at 1.9 K	194.00	mm
Cold mass sagitta at 293 K	9.14	mm
Bending radius at 1.9 K	2803.98	m
Inner coil diameter at 293 K	56.00	mm
Number of conductor blocks / pole	6	
Number of turns / pole, inner layer	15	
Number of turns / pole, outer layer	25	
Electromagnetic forces / coil quadrant at nominal field		
Horizontal force component (inner and outer layer)	1.8	MN/m
Vertical force component (inner and outer layer)	0.81	MN/m
Electromagnetic forces / coil quadrant at ultimate field		
Horizontal force component (inner and outer layer)	2.1	MN/m
Vertical force component (inner and outer layer)	0.94	MN/m
Axial electromagnetic force at each ends at nominal field	0.40	MN
Coil aperture at 293 K	56.00	mm
Cold tube inner diameter at 293 K	50.00	mm
Cold tube outer diameter at 293 K	53.00	mm
Cold mass length at 293 K (active part)	15.18	m
Cold mass diameter at 293 K	570.0	mm
Cold mass overall length with ancillaries	16.5	m
Total mass	~ 27.5	t

Table 3.4: Main parameters of the dipole cold mass.


<u>Squeezing the beam – quadrupoles I</u>

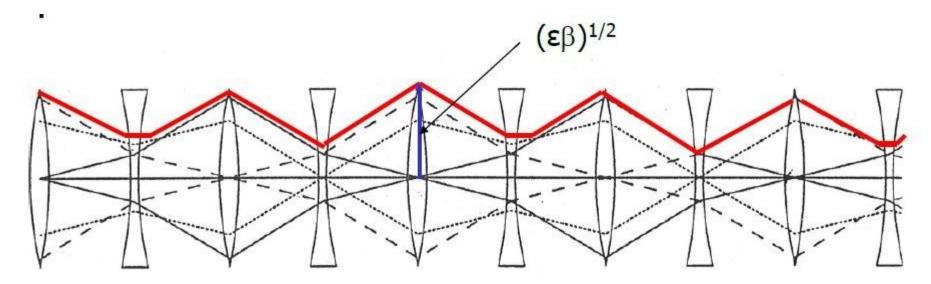
- Want to keep particles rotating on (around) reference trajectories
- Problem to keep the beam together
 - even small disturbances
 (for example gravity)
 may lead to lost particles
- restoring force of the type F=-kx , F=-ky would keep the particles close to the ideal orbit!



<u>Squeezing the beam - quadrupoles II</u>

- Magnet surfaces shaped as hyperbolas give linear field!
- ◆ B_× = -gy
- ◆ B_y = -gx
- Quadrupole magnets!
- Unfortunatelly, forces are focusing in one plane and defocusing in the orthogonal plane
- ♦ F_x = -qvgx
- F_y= qvgy
- Opposite focusing/defocusing is achieved by rotating the magnet by 90°

Strong focusing and FODO lattice I



QF QD QF QD QF QD QF QD QF QD QF QD

Analogy with optics

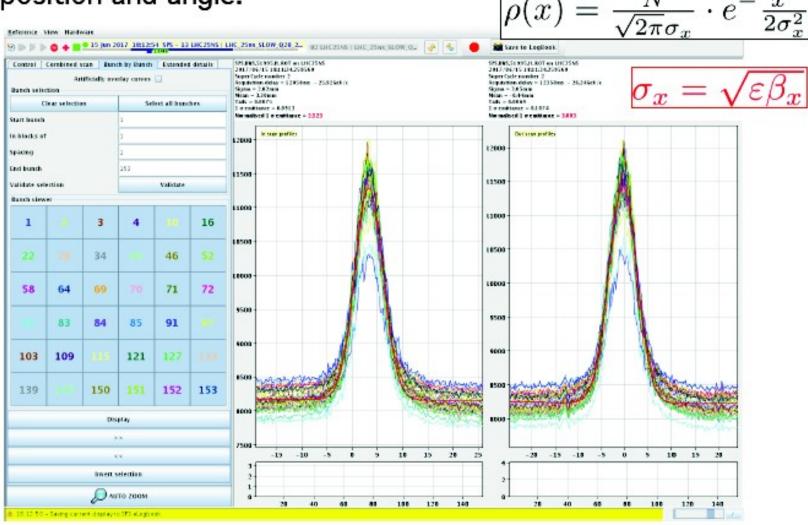
- Alternating focusing and defocusing lenses give together total focusing effect in both planes
 - Strong focusing, one of big ideas in accelerator physics
- Modern accelerators using FODO (FocusingDefOcusing) structures
- Particles oscillate around nominal trajectories betatron oscillations

Strong focusing and FODO lattice II

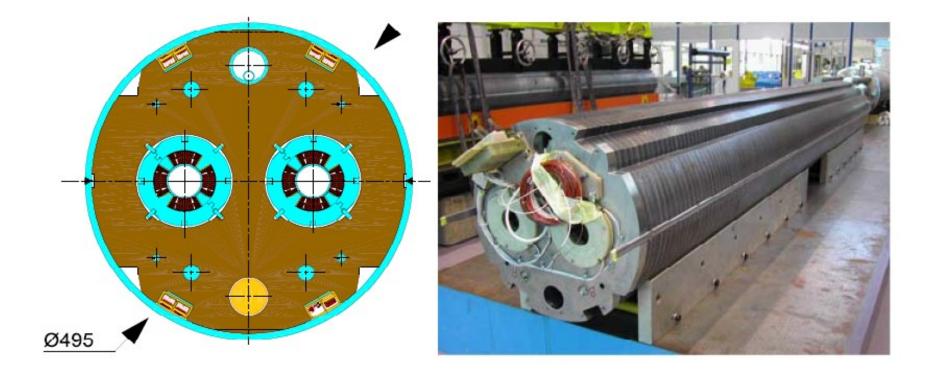
The envelope around all the trajectories of the particles circulating in the machine is called β -function:

- Minimum at QD, maximum at QF
- Property of particular machine (beam optics)

Beam size:
$$\sigma_{x,y} = \sqrt{\epsilon \beta_{x,y}}$$


 $\boldsymbol{\epsilon}$ is the emmitance of the beam:

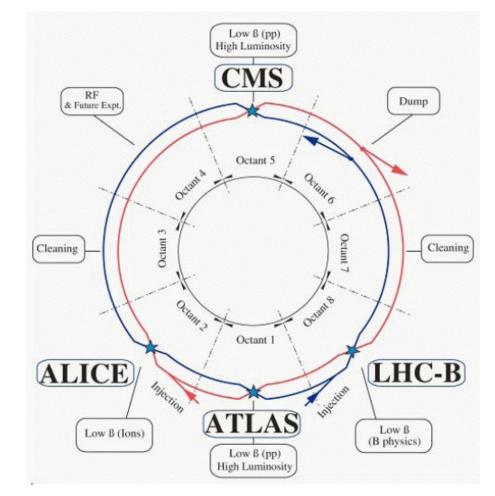
describes the quality of the beam


jb, Warwick week, April 2023

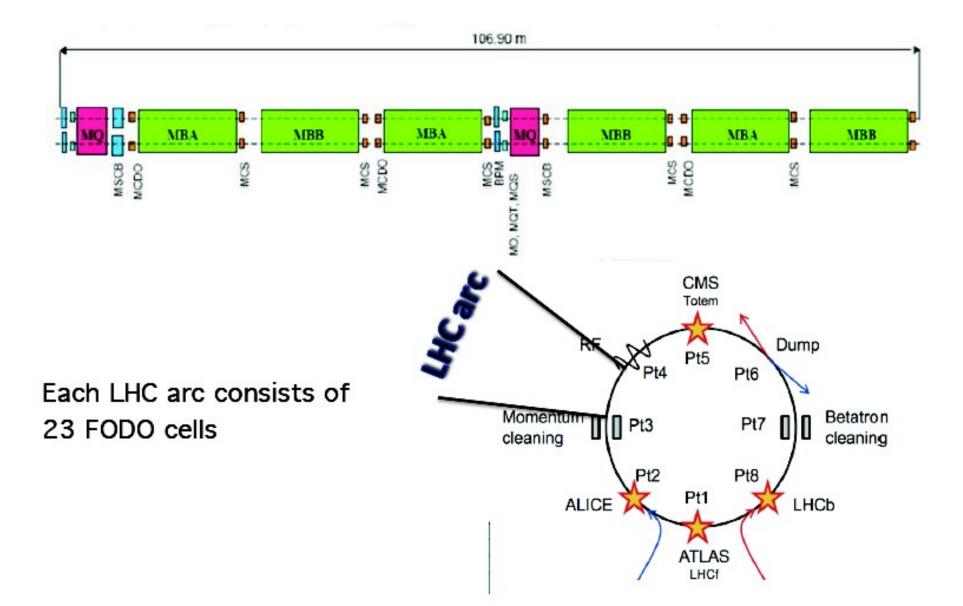
Strong focusing and FODO lattice III

Typically particles in accelerator have Gaussian particle distribution in position and angle. $o(x) = \frac{N}{2} + e^{-x^2}$

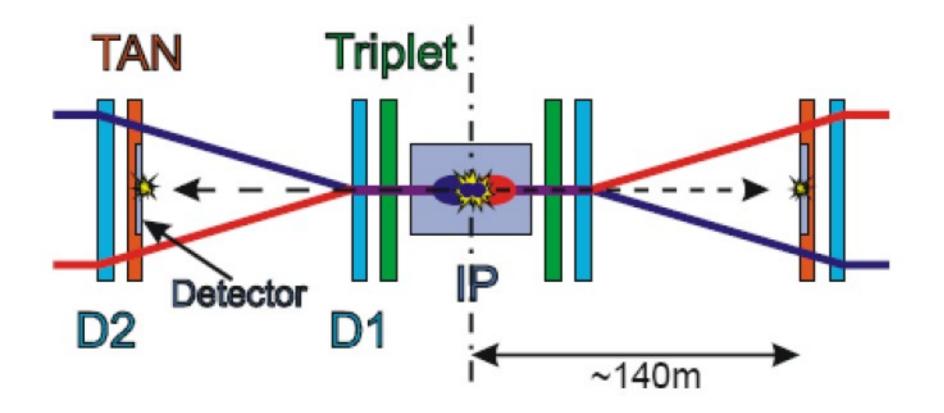
LHC quadrupoles



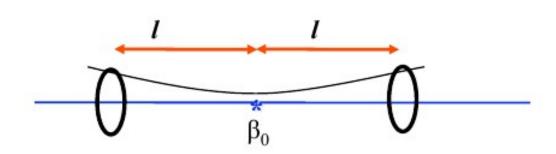
1	1	
Integrated Gradient	690	Т
Nominal Temperature	1.9	К
Nominal Gradient	223	T/m
Peak Field in Conductor	6.85	Т
Temperature Margin	2.19	K
Working Point on Load Line	80.3	%
Nominal Current	11870	Α
Magnetic Length	3.10	m
Beam Separation distance (cold)	194.0	mm
	500	
Inner Coil Aperture Diameter (warm)	56.0	mm
Outer Coils Diameter	118.44	mm
Outer Yoke diameter	452	mm
Collar Material	Austeni	
Yoke Material		rbon Steel
Yoke Length including End Plates	3250	mm
Cold Mass Length Between End Covers	5345	mm
Total Mass Including Correctors	6500	kg
Number of turns per Coil (pole)	24	
Number of turns per coil inner layer (2 blocks)	2+8	
Number of turns per coil outer layer (2 blocks)	7+7	
Cable length per coil (pole)	160	m
Cable length per two-in-one quadrupole	1280	m
Bare Cable	Same as dipole outer layer	
Insulation Thickness 1st layer	50	μm
2 nd layer	37.5	μm
3 rd layer (adhesive)	50+5	μm
Self-inductance, one aperture	5.6	mH
Stored energy, one aperture	395	KJ
Electromagnetic forces: Resultant in x-dir	537	KN
Resultant in y-dir	-732	KN


Table 3.5: Parameter list for main quadrupole magnets at 7.0 TeV.

LHC layout


- Circumference = 26658.9 m
- 8 arcs and 8 straight sections
 - Straight sections have either experiment or "utilities"
 - Four used for experiments
 - Arcs contain magnets (LHC lattice)
 - → 23 FODO cells in each arc
 - A FODO cell consistes of 2 quadrupoles, 6 dipoles and additional correction magnets

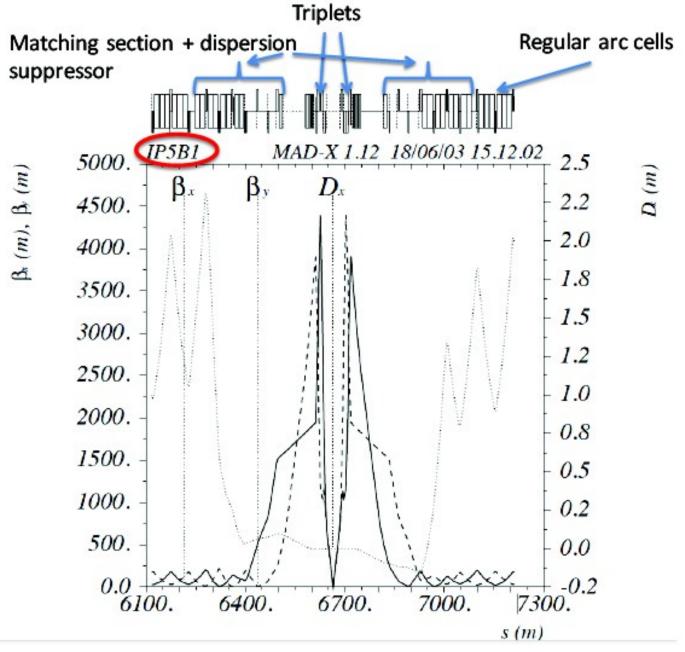
The LHC FODO cell



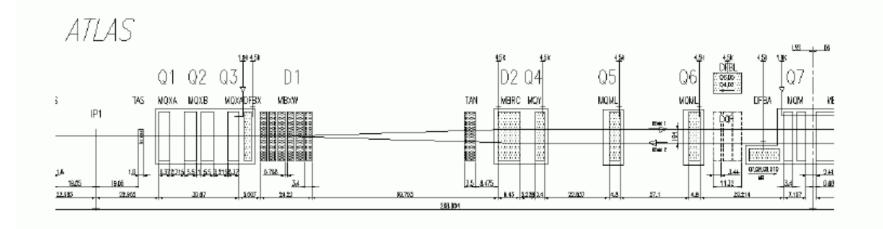
<u>Getting particles to collide – interaction point I</u>

Special drift: Minibeta insertion

Minibeta insertion is a symmetric drift space with a beta waist in the center of the insertion

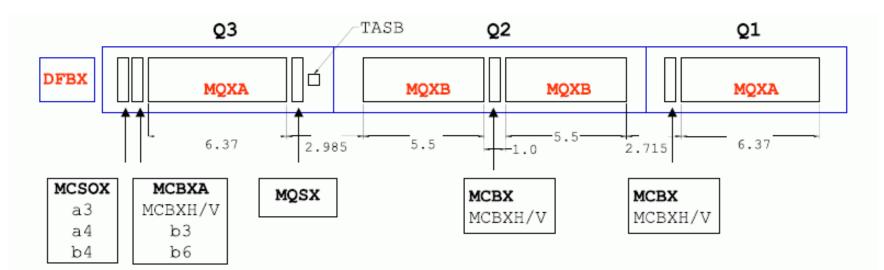


On each side of the symmetry point a quadrupole doublet or triplet are used to generate the waist.


They are not part of the regular lattice.

E.g. collider experiments are located in minibeta insertions: smallest beam size possible for the colliding beam to increase probability of collisions.

Minibeta insertion - Example LHC


<u>Getting particles to collide - interaction point I</u>

Bringing beams together for collisions:

- Bend them in dedicated dipole magnets (D1, D2 on the figure)
- Then squeeze them as much as possible just before the collision point
 - Low- β triplets

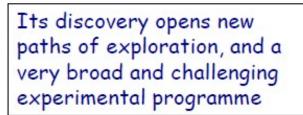
<u>Getting particles to collide - interaction point III</u>

- Low beta triplets :
 - Set of quadrupole magnets designed to squeeze beam before interaction point

$$L = f \frac{n_1 n_2}{4 \pi \sigma_x \sigma_y}$$

- Luminosity depends on:
- Number of particles per bunch (n1, n2)
- Bunch transverse size at the interaction point (σ_x,σ_y)
- Bunch collision rate f

And many others ...

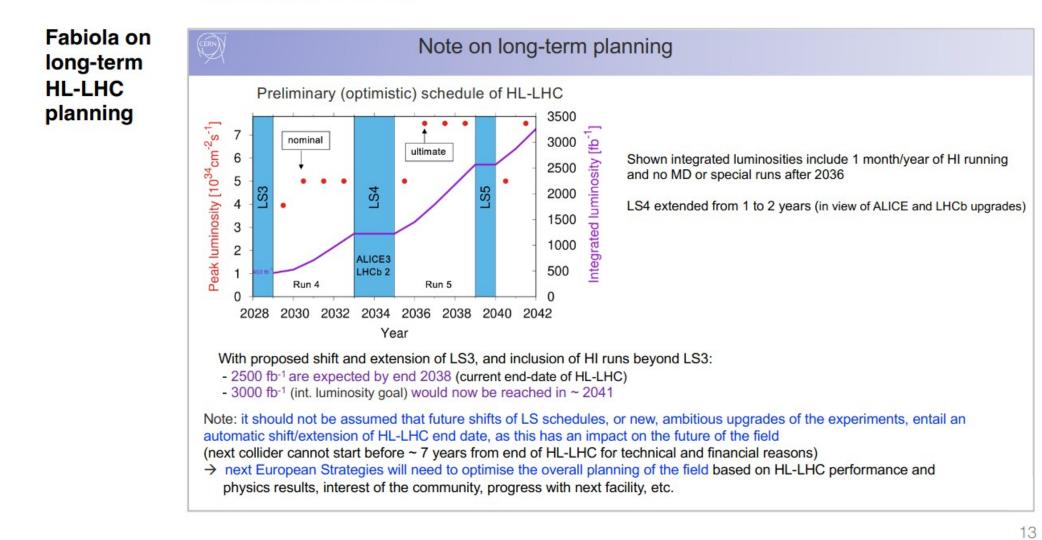

- Vacuum system
- Beam injection system
- Beam dumping
- Pre-accelerators
- Cryogenic system
- Power distribution and protection
- Correction magnets
- Beam monitoring
- Control system

٠...

LHC in the near (and not-so-near) future

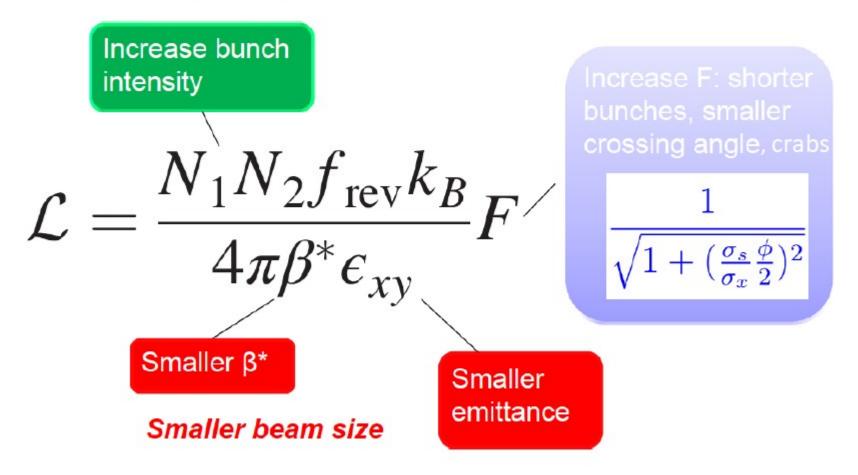
The H boson is not just ... "yet another particle"

- Profoundly different from all elementary particles discovered so far
- Related to the most obscure sector of SM
- □ Linked to some of the deepest structural questions (flavour, naturalness, vacuum, ...)

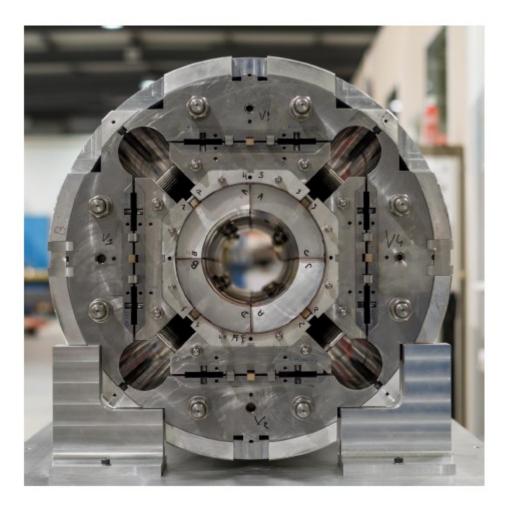

Every problem of the SM originates from Higgs interactions netwolness stability G.F. Giudice

- Precision measurements of couplings (as many generations as possible, loops, ...)
- □ Forbidden and rare decays (e.g. $H \rightarrow \tau \mu$) \rightarrow flavour structure and source of fermion masses
- □ H potential (HH production, self-couplings):
 - \rightarrow EWSB mechanism (strong dynamics ?)
 - \rightarrow EW phase transition \rightarrow baryogenesis ?
- □ Exotic decays (e.g. $H \rightarrow E_T^{miss}$) \rightarrow new physics ?
- Other H properties (width, CP, ...)
- Searches for additional H bosons

^{1.} Olanotti, CERN, 29/10/201.

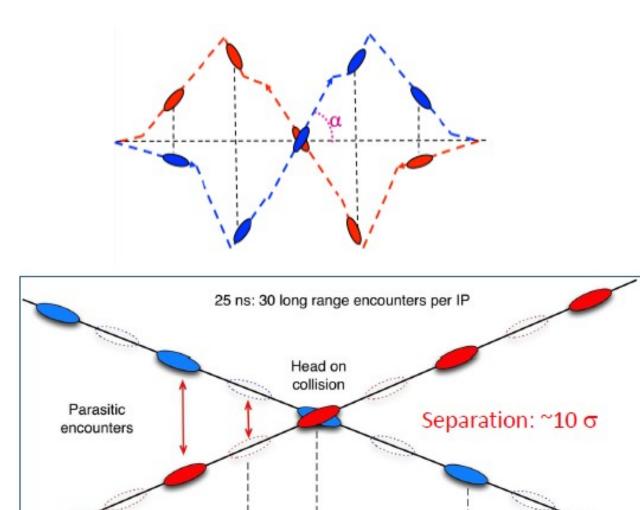

New Year CERN directorate meeting

13 January 2022, Agenda: https://indico.cern.ch/event/1106493/



HL-LHC, luminosity upgrade

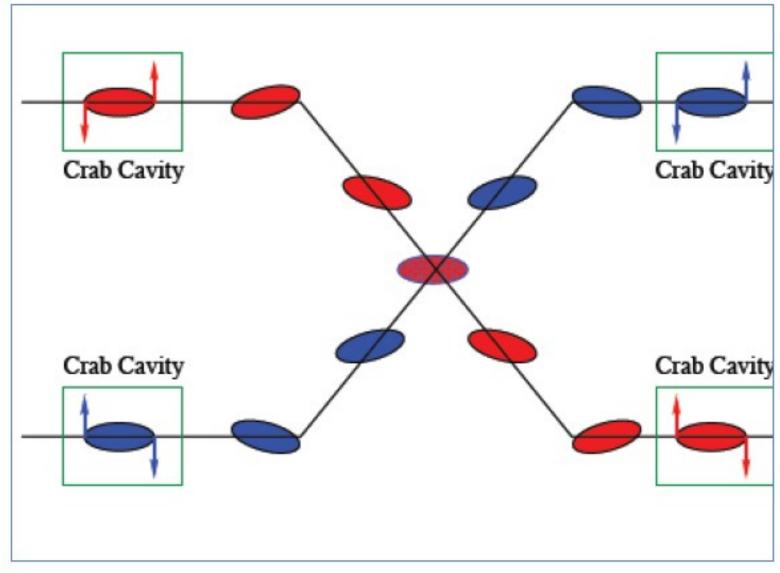
Higher intensity


<u>New, wide-aperture quadrupoles</u>

Requires new, Nb₃Sn technology

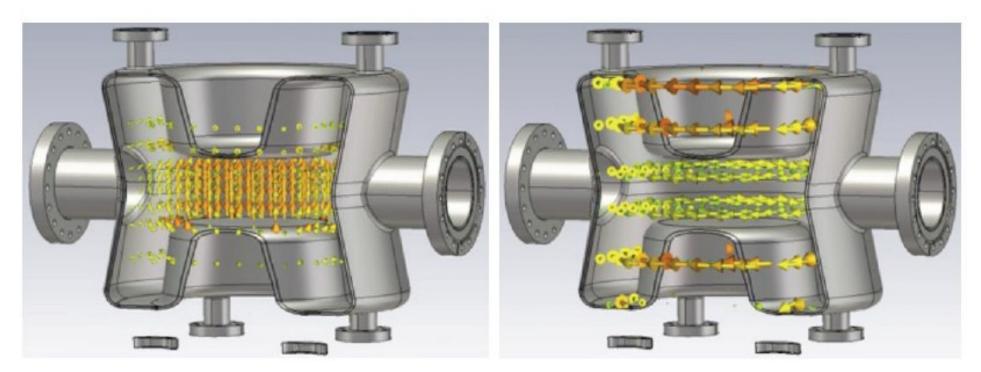
jb, Warwick week, April 2023

<u>Current LHC, operation with crossing angle</u>


25 ns

7.5 m

12.5 ns


3.75 m

<u>HL-LHC, crossing angle compensation using</u> <u>crab cavities</u>

Crab Cavity

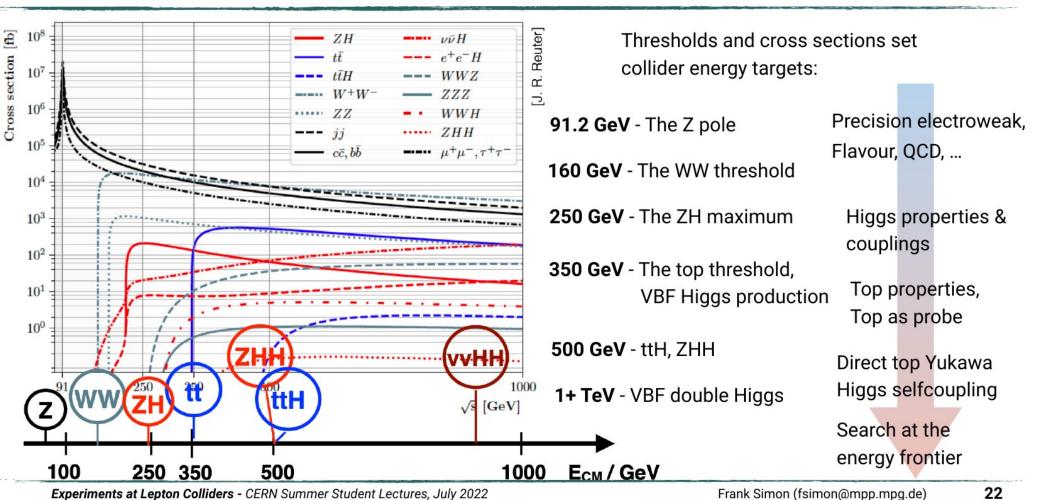
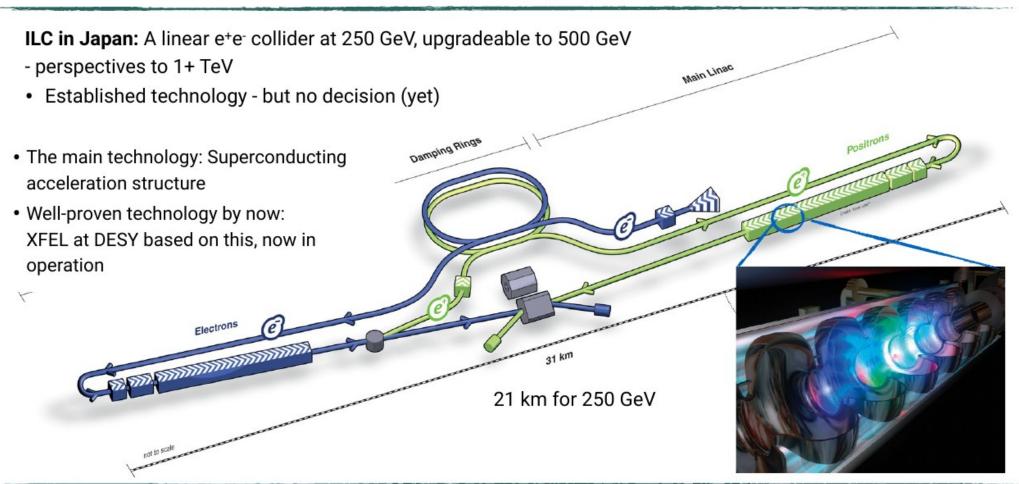

- Create a oscillating transverse electric field
- Kick head and tail of the bunch in opposite directions
- Serving to mitigate the effect of the crossing angle at the IP

Figure 4. Electric (left) and magnetic (right) field distributions inside the DQWCC.

J. Bracinik

jb, Warwick week, April 2023

Perspectives of Energy


Bringing together physics goals and collider energy

J. Bracinik

The International Linear Collider

e⁺e⁻ Collider - Construction in Japan?

Experiments at Lepton Colliders - CERN Summer Student Lectures, July 2022

31

MAX-PLANC

FUTURE CIRCULAR COLLIDERS

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh) → main emphasis, defining infrastructure requirements
- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- HE-LHC with FCC-hh technology
- p-e (FCC-he) option, IP integration, e⁻ from ERL

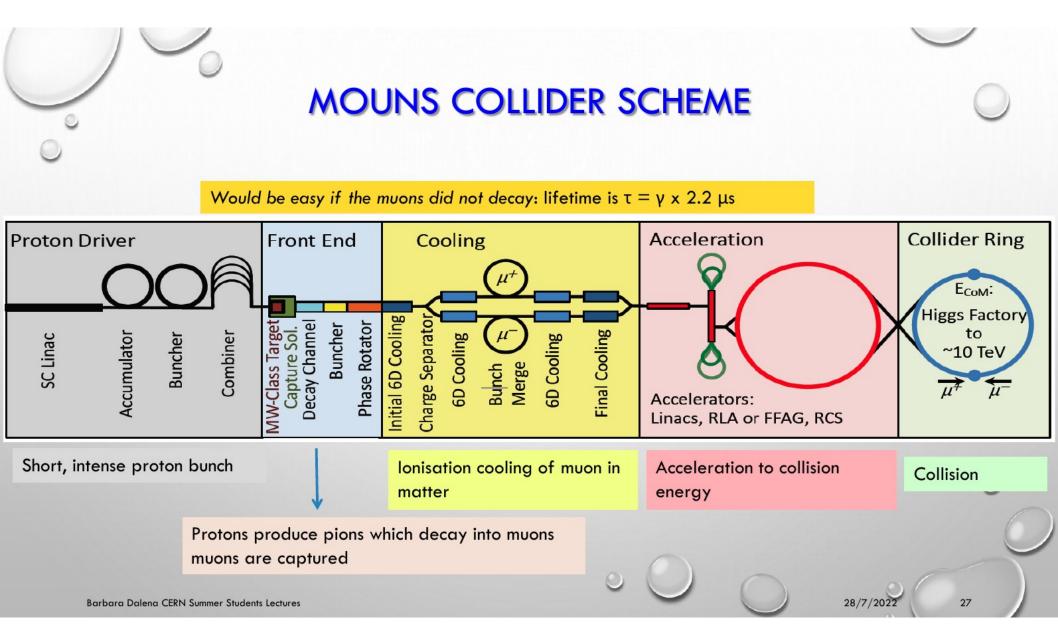
CDRs published in European Physical Journal C (Vol 1) and ST (Vol 2 – 4)

Summary documents provided to EPPSU SG

•FCC-integral, FCC-ee, FCC-hh, HE-LHC

•Accessible on http://fcc-cdr.web.cern.ch/

Cost: ~28.6 BCHF Power: ~580 MW (hh) \leq 340 MW (ee)


Barbara Dalena CERN Summer Students Lectures

Schematic of 80 - 100 km long tunne HL-LHC FCC-hh LHC Initial Ultimate c.m. Energy [TeV] 14 100 Peak luminosity $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$ 1.0 5.0 5.0 < 30.0Optimum integrated lumi / day [fb⁻¹] 0.47 28 22 8

FUTURE CIRCULAR COLLIDER (FCC) - 3D Schematic

Underground Infrastructure - Single Tunnel Design John Osborne - Charlie Cook - Joanna Stanvard - Ángel Navascués

Arc filling factor 0.79 0.8 Straight sections 8×528 $6 \times 1400 \text{ m} + 2 \times 2800$ Number of IPs $2 + 2$ $2 + 2$ Injection energy [TeV] 0.45 3.3	Circumference [km]	26.7	97.75
Number of IPs2+22+2Injection energy [TeV]0.453.3	Arc filling factor	0.79	0.8
Injection energy [TeV] 0.45 3.3	Straight sections	8×528	$6 \times 1400 \text{ m} + 2 \times 2800$
	Number of IPs	2 + 2	2 + 2
28/7/2022	Injection energy [TeV]	0.45	3.3

Conclusions and outlook

- Elementary particle physics is in very exciting period indeed !
- LHC Runs 1 and w were very successful !!
- At the moment preparing for Run 3, hopefully early 2022
- Long-term future of particle physics at CERN is bright !!!!

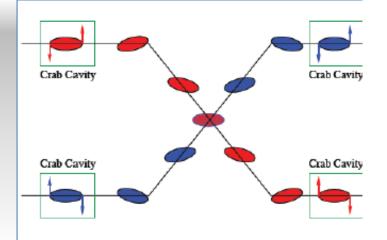
Slides that were not good enough to make it in to the talk

LHC - 2015

- Target energy: 6.5 TeV
 - to be confirmed at end of powering tests!!!
- Bunch spacing: 25 ns
 - strongly favored by experiments (pile-up limit around 50)
- Beta* in ATLAS and CMS: 80 to 40 cm

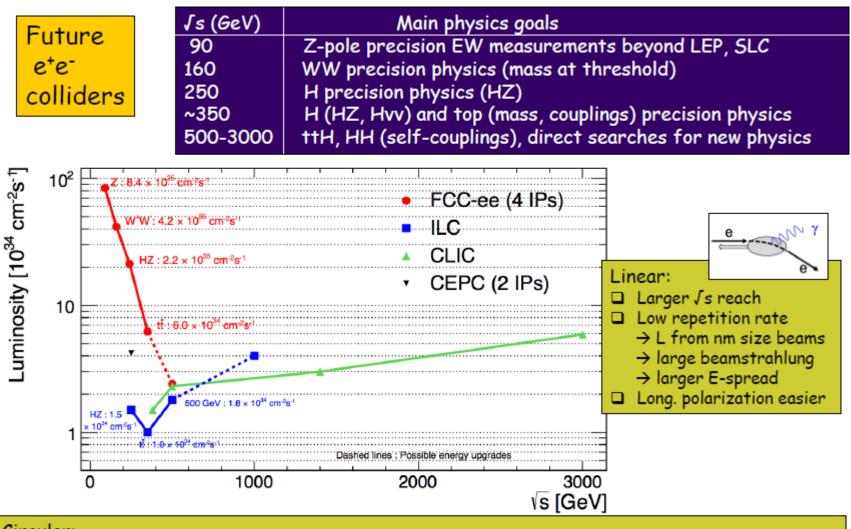
Energy	25 ns
Lower quench margins	Electron-cloud
Lower tolerance to beam loss	UFOs
Lower intensity set-up beams	More long range collisions
Hardware closer to maximum (beam	Larger crossing angle, higher beta*
dumps, power converters etc.)	 Higher total beam current
	Higher intensity per injection

8


How?

Beam from injectors

- High bunch population, low emittance, 25 ns beam
- Lower beta* (~15 cm)
 - New inner triplet magnets wide aperture Nb₃Sn
 - Large aperture NbTi separator magnets
 - Novel optics solutions


Crossing angle compensation

- Crab cavities
- Dealing with the regime
 - Collision debris, high radiation
 - High machine availability
 - Beam stability, losses etc.

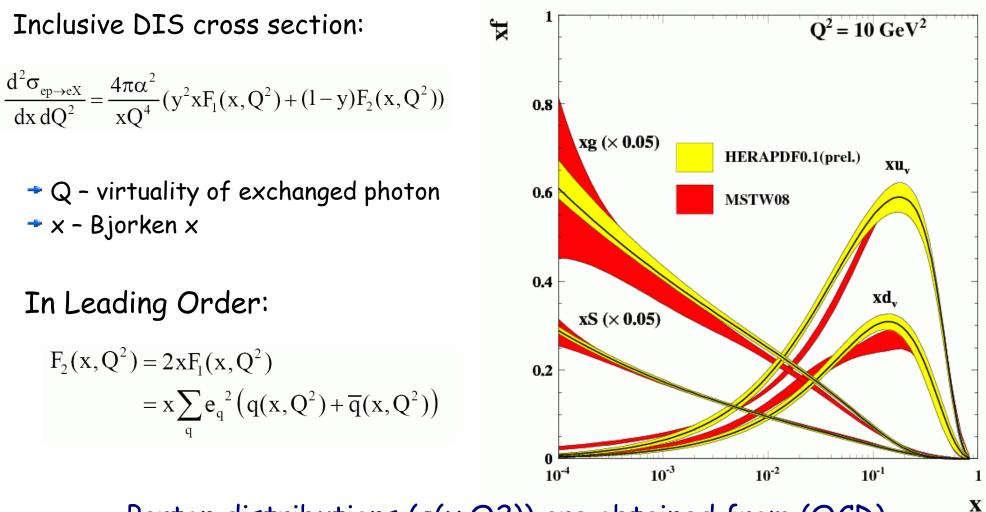
HL-LHC: key 25 ns parameters

Protons per bunch	2.2 x 10 ¹¹		
Number of bunches	2750		
Normalized emittance	2.5 micron		
Beta*	15 cm		
Crossing angle	590 microrad		
Geometric reduction factor	0.305		
Virtual luminosity	2.4 x 10 ³⁵ cm ⁻² s ⁻¹		
Levelled luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹		
Levelled <pile-up></pile-up>	140		

- Circular:
- \Box Js limited by SR ~ E⁴_{beam}/R
- Large number of circulating bunches → high L (increases at lower Js as less SR → spare RF power used to accelerate more bunches). Note: need top-up injection ring to compensate fast L burn-off (lifetime ~ 30')
- Several interaction regions possible
- Precise E-beam measurement from resonant depolarization

Searches for physics beyond SM

ATLAS SUSY Searches* - 95% CL Lower Limits

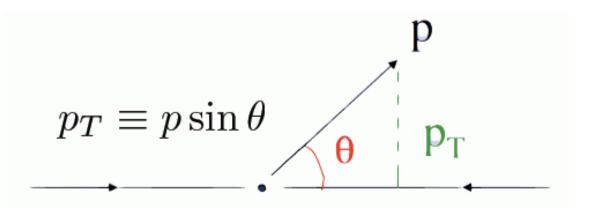

	Model	e, μ, τ, γ	Jets	$E_{\rm T}^{\rm miss}$	∫£ dt[fb⁻	Mass limit	$\sqrt{s} = 7, 8 \text{ TeV}$	$\sqrt{s} = 13 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1}^{0} \\ \bar{q}\bar{q}, \bar{q} \rightarrow q \tilde{\ell}_{1}^{0} (\text{compressed}) \\ \bar{q}\bar{q}, \bar{q} \rightarrow q (\ell [\ell_{1}/r) \mathcal{K}_{1}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q q \tilde{\ell}^{0} \\ \bar{g}\bar{s}, \bar{g} \rightarrow q \tilde{\ell}^{0} \\ \bar{g}\bar{s}, \bar{\ell}^{0} \\ $	$\begin{array}{c} 0\text{-3}\ e,\mu/1\text{-2}\ \tau\\ 0\\ \text{mono-jet}\\ 2\ e,\mu\ (\text{off-}Z)\\ 0\\ 1\ e,\mu\\ 2\ e,\mu\\ 0\\ 1\text{-2}\ \tau+0\text{-1}\ \ell\\ 2\ \gamma\\ \gamma\\ 2\ e,\mu\ (Z) \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 0-3 jets 7-10 jets 0-2 jets - 1 b 2 jets 2 jets 2 jets	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 3.2 20.3 3.2 3.3 20 3.2 20.3 20.3 2	980 GeV 510 GeV 820 GeV 820 GeV 900 GeV	1.85 TeV m(i) m(i) m(i) m(i) m(i) m(i) 1.52 TeV m(i) 1.38 TeV m(i) 1.4 TeV m(i) 1.4 TeV m(i) 1.34 TeV m(i) 1.37 TeV m(i)	=m(\tilde{g}) =0 GeV, m(1 st gen. \tilde{q})=m(2 nd gen. \tilde{q}) -m($\tilde{\xi}^{n}$)<5 GeV =)=0 GeV >)=0 GeV >)=0 GeV =)=0 GeV =)=100 GeV =>0 GeV =>0 LSP ><0 LSP ><0 LSP ><0.1 mm)<950 GeV, cr(NLSP)<0.1 mm, μ <0 ><850 GeV, cr(NLSP)<0.1 mm, μ >0 .<850 GeV	1507.05525 ATLAS-CONF-2015-062 <i>To appear</i> 1503.03290 ATLAS-CONF-2015-062 ATLAS-CONF-2015-062 1501.03555 1602.06194 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493
3 ^{ra} gen. <i>§ med</i> .	Gravitino LSP $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{+}$	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	mono-jet 3 b 3 b 3 b	Yes Yes Yes Yes	20.3 3.3 3.3 20.1	865 GeV	1.78 TeV m(\tilde{t}' 1.76 TeV m(\tilde{t}'	>1.8 × 10 ⁻⁴ eV, m(\tilde{g})=m(\tilde{q})=1.5 TeV >800 GeV >=0 GeV >300 GeV	1502.01518 ATLAS-CONF-2015-067 <i>To appear</i> 1407.0600
^{3/4} gen. squarks 3 direct production	$\begin{array}{c} \frac{\delta \delta (s, \delta) - \delta \tilde{X}_{1}^{0}}{\tilde{b}_{1}(b_{1}, b_{1}) - \delta \tilde{X}_{1}^{0}} \\ \tilde{b}_{1}(b_{1}, b_{1}) - \delta \tilde{X}_{1}^{0} \\ \tilde{h}_{1}(t_{1}, t_{1}) - \delta \tilde{X}_{1}^{0} \\ \tilde{h}_{2}(t_{1}, t_{1}) - \delta \tilde{X}_{$	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ (0 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-ta 1 b 1 b 6 jets + 2 b	Yes Yes Yes b Yes ag Yes Yes Yes	3.2 3.2 4.7/20.3 20.3 20.3 20.3 20.3	840 GeV 325-540 GeV 117-170 GeV 200-500 GeV 90-196 GeV 205-715 GeV 90-245 GeV 150-600 GeV 1 200-610 GeV 2 290-610 GeV 22 320-620 GeV	m(²⁷ m(⁷ m(⁷ m(⁷ m(⁷ m(⁷ m(⁷ m(⁷)<100 GeV)=50 GeV, m($\tilde{\chi}_{1}^{\pm}$)= m($\tilde{\chi}_{1}^{0}$)+100 GeV $\tilde{\chi}_{1}^{0}$ = 2m($\tilde{\chi}_{1}^{0}$), m($\tilde{\chi}_{1}^{0}$)=55 GeV	ATLAS-CONF-2015-066 1602.09058 1209.2102, 1407.0583 08616, ATLAS-CONF-2016 1407.0608 1403.5222 1403.5222 1506.08616
EW direct	$ \begin{array}{l} \tilde{t}_{\perp,\mathbf{R}}\tilde{\ell}_{\perp,\mathbf{R}},\tilde{\ell}\rightarrow\tilde{\ell}\tilde{\ell}_{1}^{0} \\ \tilde{\chi}_{\perp}^{*}\tilde{\chi}_{\perp},\tilde{\chi}_{\perp}^{*}\rightarrow\tilde{\ell}v(\tilde{v}) \\ \tilde{\chi}_{\perp}^{*}\tilde{\chi}_{\perp},\tilde{\chi}_{\perp}^{*}\rightarrow\tilde{v}(\tilde{v}) \\ \tilde{\chi}_{\perp}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{u}_{\perp}\tilde{v}_{L}^{*}(\tilde{v}), \tilde{v}\tilde{\ell}_{\perp}\ell(\tilde{v}v) \\ \tilde{\chi}_{\perp}^{*}\tilde{\chi}_{2}^{0}\rightarrow W\tilde{v}_{1}^{0}\tilde{\chi}_{\perp}^{0} \\ \tilde{\chi}_{\perp}^{*}\tilde{\chi}_{2}^{0}\rightarrow W\tilde{\chi}_{\perp}^{0}\tilde{h}\tilde{\chi}_{\perp}, h\rightarrow b\tilde{b}/WW/\tau \\ \tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*}\tilde{\chi}_{2}^{*}\rightarrow\tilde{\kappa}_{\perp}\ell \\ \text{GGM (wino NLSP) weak prod } \end{array} $	4 e, µ	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-335 GeV 140-475 GeV 1 355 GeV 1, k ³ 715 GeV 4, k ⁶ 425 GeV 3, k ³ 270 GeV 3, k ³ 635 GeV 4, k ⁴ 845 GeV	$\begin{array}{c} m(\tilde{k}^{2}) \\ m(\tilde{k}^{1}) = m(\tilde{k}^{0}), \\ m(\tilde{k}^{1}) = m(\tilde{k}^{0}), \\ m(\tilde{k}) \\ m(\tilde{k}^{0}) = m(\tilde{k}^{0}), \\ m(\tilde{k}^{0}) = m(\tilde{k}^{0}), \end{array}$)=0 GeV)=0 GeV, m(\tilde{t}, \tilde{v})=0.5(m(\tilde{t}_1^+)+m(\tilde{t}_1^0)))=0 GeV, m(\tilde{t}, \tilde{v})=0.6(m(\tilde{t}_1^+)+m(\tilde{t}_1^0)) m(\tilde{t}_1^0)=0, m(\tilde{t}, \tilde{v})=0.5(m(\tilde{t}_1^0)+m(\tilde{t}_1^0)))=m(\tilde{t}_2^0), m(\tilde{t}_1^0)=0, sleptons decoupled m(\tilde{t}_1^0)=0, m(\tilde{t}, \tilde{v})=0.5(m(\tilde{t}_2^0)+m(\tilde{t}_1^0)) m	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-Ilved particles	$\begin{array}{l} \text{Direct} \ \tilde{k}^{\dagger}_{1} \tilde{k}_{1}^{*} \ \text{prod., long-lived} \ \tilde{k} \\ \text{Direct} \ \tilde{k}^{\dagger}_{1} \tilde{k}_{1}^{*} \ \text{prod., long-lived} \ \tilde{k} \\ \text{Stable, stopped} \ \tilde{g} \ \text{R-hadron} \\ \text{Metastable} \ \tilde{g} \ \text{R-hadron} \\ \text{GMSB, stable} \ \tilde{r}, \ \tilde{k}_{1}^{0} \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau \\ \text{GMSB, } \ \tilde{k}_{1}^{0} \rightarrow \gamma \tilde{G}, \ \text{long-lived} \ \tilde{k}_{1}^{0} \\ \tilde{g} \ \tilde{g}, \ \tilde{k}_{1}^{0} \rightarrow eee \left(qu \nu / \mu \nu \nu \right) \\ \text{GGM} \ \tilde{g} \ \tilde{g}, \ \tilde{k}_{1}^{0} \rightarrow Z \tilde{G} \end{array}$	^{,±} 0 dE/dx trk		Yes Yes - - Yes - -	20.3 18.4 27.9 3.2 19.1 20.3 20.3 20.3	270 GeV 495 GeV 550 GeV 537 GeV 440 GeV 1.0 TeV 1.0 TeV	m(ž m(ž 1.54 TeV m(ž 10< 1 <rr 7 <c< td=""><td>$\begin{array}{l} & -m(\tilde{v}_1^{1}) - 160 \ \text{MeV}, \tau(\tilde{k}_1^{-}) = 0.2 \ \text{ns} \\ & -m(\tilde{v}_1^{0}) - 160 \ \text{MeV}, \tau(\tilde{k}_1^{-}) < 15 \ \text{ns} \\ & -100 \ \text{GeV}, 10 \ \mu \leq \tau(\tilde{k}_2) < 1000 \ \text{s} \\ & -100 \ \text{GeV}, \tau > 10 \ \text{ns} \\ & \alpha \rho < 50 \\ & \tilde{v}_1^{0} > 3 \ \text{ns}, \text{SPSB model} \\ & \tau(\tilde{v}_1^{0}) < 40 \ \text{mm}, m(\tilde{g}) = 1.3 \ \text{TeV} \\ & \tau(\tilde{k}_1^{0}) < 40 \ \text{nm}, m(\tilde{g}) = 1.1 \ \text{TeV} \\ \end{array}$</td><td>1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162</td></c<></rr 	$\begin{array}{l} & -m(\tilde{v}_1^{1}) - 160 \ \text{MeV}, \tau(\tilde{k}_1^{-}) = 0.2 \ \text{ns} \\ & -m(\tilde{v}_1^{0}) - 160 \ \text{MeV}, \tau(\tilde{k}_1^{-}) < 15 \ \text{ns} \\ & -100 \ \text{GeV}, 10 \ \mu \leq \tau(\tilde{k}_2) < 1000 \ \text{s} \\ & -100 \ \text{GeV}, \tau > 10 \ \text{ns} \\ & \alpha \rho < 50 \\ & \tilde{v}_1^{0} > 3 \ \text{ns}, \text{SPSB model} \\ & \tau(\tilde{v}_1^{0}) < 40 \ \text{mm}, m(\tilde{g}) = 1.3 \ \text{TeV} \\ & \tau(\tilde{k}_1^{0}) < 40 \ \text{nm}, m(\tilde{g}) = 1.1 \ \text{TeV} \\ \end{array}$	1310.3675 1506.05332 1310.6584 <i>To appear</i> 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau\\ Billnear \ FPV \ CMSSM \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \rho_{\tau} \tilde{\chi}_{1}^{0} \rightarrow ee\tilde{v}_{\mu}, e\mu\tilde{v} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W\tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{+} \rightarrow \tau\tau\tilde{v}_{e}, e\tau\tilde{v} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\bar{v}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{\eta}_{1}, \tilde{\eta}_{1} \rightarrow bs \\ \tilde{\eta}_{1}\tilde{\eta}_{1}, \tilde{\eta}_{1} \rightarrow b\ell \end{array} $	$\begin{array}{ccc} 2 \ e, \mu \ (\text{SS}) \\ e & 4 \ e, \mu \\ \tau & 3 \ e, \mu + \tau \\ & 0 \\ 2 \ e, \mu \ (\text{SS}) \end{array}$	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes - Yes -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	760 GeV 760 GeV 1450 GeV 917 GeV 980 GeV 880 GeV 1320 GeV 0.4-1.0 TeV	1.45 TeV m(\tilde{q}) m(\tilde{k}' m(\tilde{k}' BR(i m(\tilde{k}'	$\begin{array}{l} = 0.11, \ \lambda_{152/(153/253)} = 0.07 \\ = m(\hat{g}), \ er_{LSP} < I \ mm \\ > 0.2 \times m(\tilde{f}^2), \ \lambda_{121} \neq 0 \\ > 0.2 \times m(\tilde{f}^2), \ \lambda_{133} \neq 0 \\ = BR(b) = BR(c) = 0\% \\ = BR(b) = BR(c) = 0\% \\ \end{array}$	1503.04430 1404.2500 1405.5086 1502.05886 1502.05886 1404.2500 1601.07453 ATLAS-CONF-2015-015

Haven't found anything, but keep searching ...

jb, Warwick week, April 2023

ATLAS Preliminary

Structure of the proton II



Parton distributions (q(x,Q2)) are obtained from (QCD) fits to cross section of various processes (ep NC, CC, high P_T jet production, ...)

J. Bracinik

jb, Warwick week, April 2023

<u>Kinematics of produced particles I</u>

We are interested in momentum of produced particles:

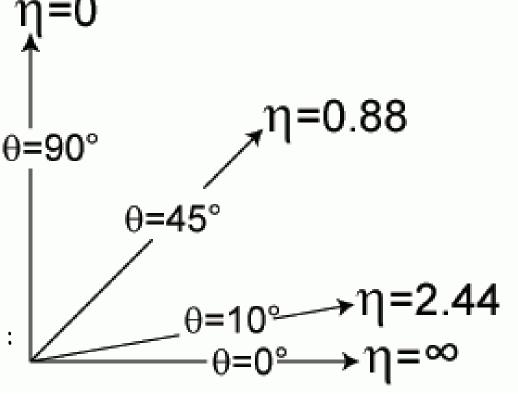
- Could use px,py,pz ...
- Geometry of collision is cylindrical, can use cylindrical coordinates
 - ≁Ρ,θ,φ
- Physics is symmetric in phi
- The fact that collisions are not collisions between pointlike particles complicates kinematic analysis
 - Total longitudinal momentum of elementary collision is not known
 - Transversal momentum(P_T) is conserved (and used very often)

<u>Produced particles - kinematics II</u>

Usually do not use P and θ, but rapidity:

$$y = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p_z}\right)$$

 Rapidity interval ∆y and P_T are invariant with respect to Lorentz boosts along beam direction!


$$m_T^2 = m^2 + p_T^2$$

 $E = m_T \cosh(y)$ $p_z = m_T \sinh(y)$

For zero mass particles (or high p)
 rapidity is equal to pseudorapidity η:

$$\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$$

J. Bracinik

Production of massive particles

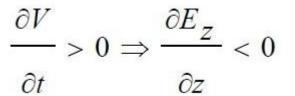
Two partons (with x1, x2) inside of two protons (with p proton A, p proton B) collide, create a heavy (new!) particle with mass M and rapidity y_M

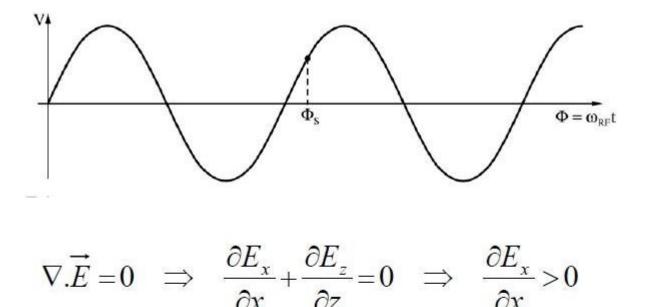
$$M^{2} = (x_{1} p_{proton A} + x_{2} p_{proton B})^{2}$$
 \longrightarrow $x_{1} x_{2} = \frac{M^{2}}{s}$

- Higher x means higher M
- To produce mass of 100 GeV with accelerator running at 14 TeV requires x=0.007
- To produce mass of 5 TeV requires x = 0.36

$$p_{zM} = m_T sh(y_M) \rightarrow M sh(y_M) \qquad x_1 = \left[\frac{M}{\sqrt{s}}\right] \exp(y_M)$$

$$p_{zM} = p_{zparton1} - p_{zparton} = (x_1 - x_2)\frac{\sqrt{s}}{2} \qquad x_2 = \left[\frac{M}{\sqrt{s}}\right] \exp(-y_M)$$

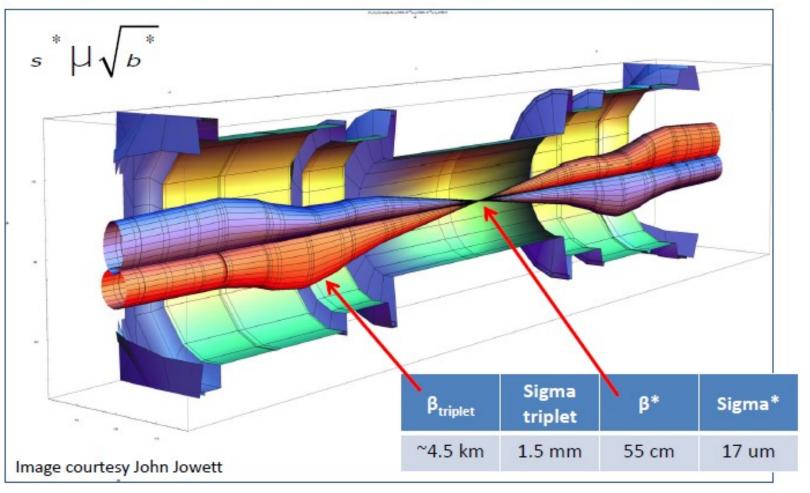

To produce M at zero rapidity we need partons with same x, going to higher rapidities of particle M means one parton at higher x, the other one at smaller x


J. Bracinik

jb, Warwick week, April 2023

<u>A consequence of phase stability</u>

Longitudinal stability - particle that comes earlier gets accelerated less:


- Maxwell equations show that this leads to de-focusing in transverse direction...
- Want to keep beam profile small, too ...
- Need some magnets ...

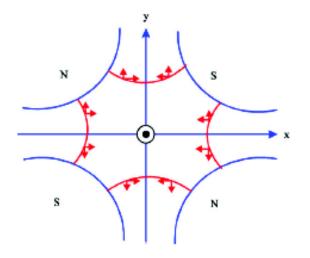
J. Bracinik

jb, Warwick week, April 2023

Squeeze in ATLAS

- Lower beta* implies larger beams in the triplet magnets
- Larger beams implies a larger crossing angle
- Aperture concerns dictate caution

Requirement: Lorentz force increases as a function of distance from design trajectory


E.g. in the horizontal plane

$$F(x) = q \cdot v \cdot B(x)$$

We want a magnetic field that

$$B_y = g \cdot x \qquad B_x = g \cdot y$$

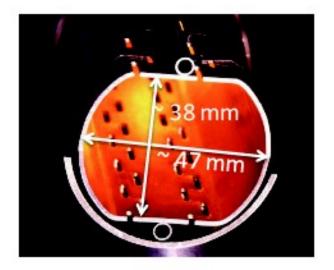
→ Quadrupole magnet

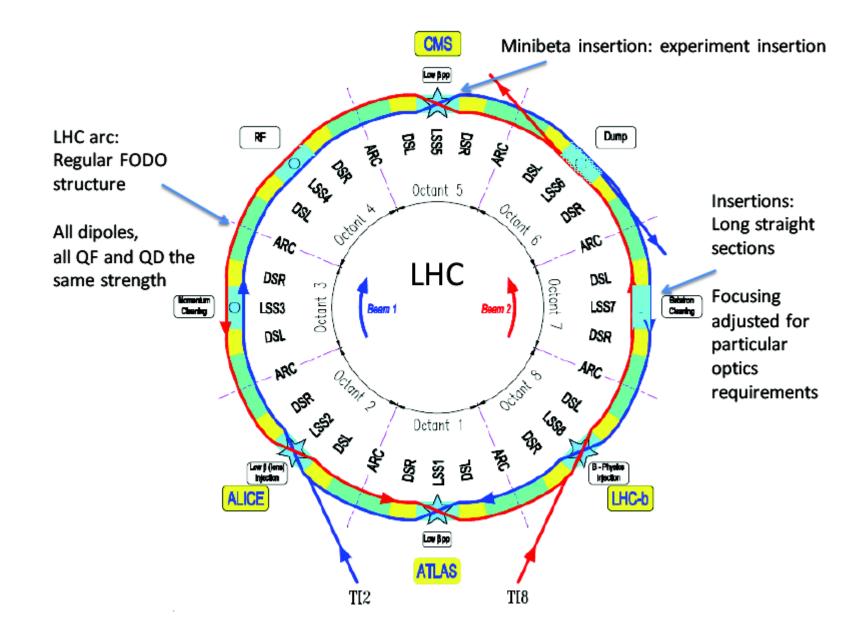
The red arrows show the direction of the force on the particle

Gradient of quadrupole Normalized gradient, focusing strength $g = \frac{2\mu_0 nI}{r^2} [\frac{T}{m}] \qquad \qquad k = \frac{g}{p/q} [m^{-2}]$

J. Bracinik

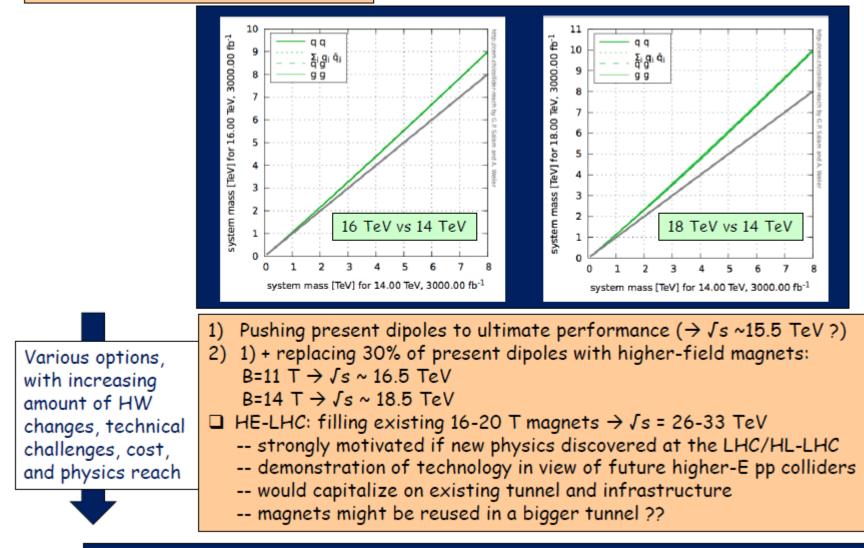
The emittance at LHC injection energy 450 GeV: $\epsilon = 7.3$ nm At 7 TeV: $\epsilon = 0.5$ nm $\epsilon_{7TeV} = \epsilon_{450GeV} \frac{\gamma_{450GeV}}{\gamma_{7TeV}}$


Normalized emittance: $\epsilon^* = 3.5 \mu m$ Normalized emittance preserved during acceleration.


And for the beam sizes: At the location with the maximum beta function ($\beta_{max} = 180$ m):

```
\sigma_{450GeV} = 1.1 \text{ mm}
```

 $\sigma_{7TeV} = 300 \ \mu m$

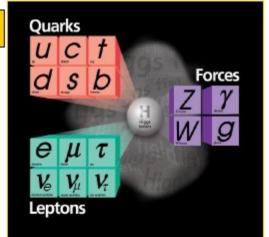

Aperture requirement: a > 10 σ Vertical plane: 19 mm ~ 16 σ@ 450 GeV

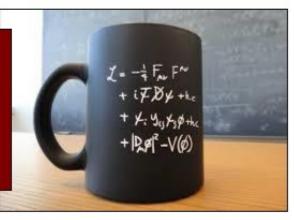
High Energy LHC???

Higher $\int s$ in the LHC tunnel?

These options are being studied (physics case, technical feasibility, cost, time scale) F. Giano in time for next round of European Strategy (~2018/2019)

Standard model and its problems


What did we accomplish so far in particle physics?


With the discovery of the Higgs boson, we have completed the Standard Model (> 50 years of theoretical and experimental efforts !)

Note: fermions (c, b, t, τ) discovered at accelerators in the US, bosons (g, W, Z, H) in Europe ...

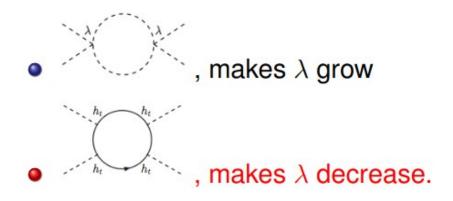
We have tested the Standard Model with very high precision (wealth of measurements since early '60s, in particular at accelerators)

- → it works BEAUTIFULLY (puzzling ...)
- no significant deviations observed (but difficult to accommodate non-zero neutrino masses)

However: SM is not a complete theory of particle physics, as several outstanding questions remain (raised also by precise experimental observations) that cannot be explained within the SM.

These questions require NEW PHYSICS

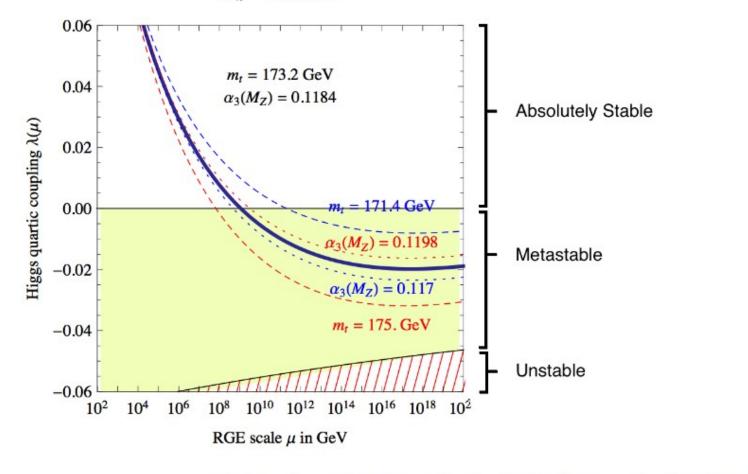
F. Gianotti, CERN,


2

J. Bracinik

Introduction SM vacuum stability Conclusions	SM effective potential
--	------------------------

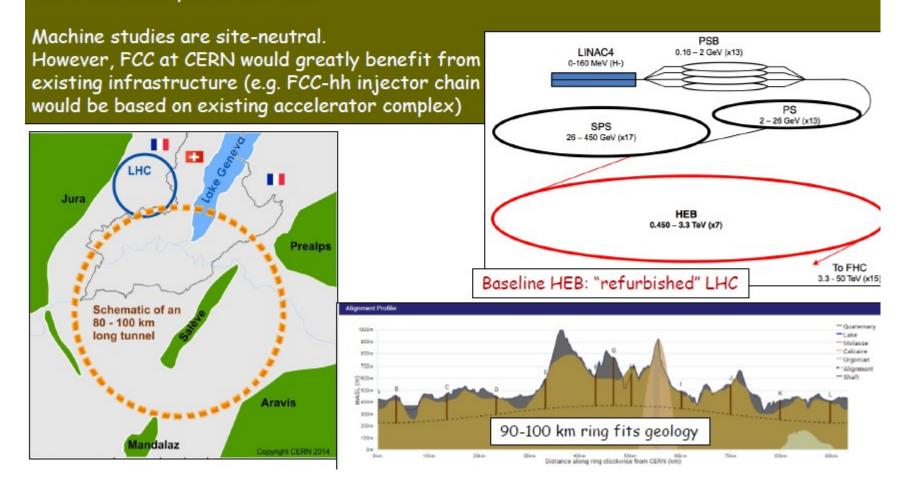
But, can λ become negative? Yes, two main competing effects:


$$\mu \frac{d\lambda(\mu)}{d\log(\mu)} = (\begin{array}{c} \# \ \lambda^2 \end{array} + \ldots - \# \ h_t^4 \end{array} + \ldots) + \ldots$$

$$\hbar_t(v) = \sqrt{2}M_t/v$$
 and $\lambda(v) = M_h^2/(2v^2)$.

		≣ *) Q (*
J. Elias-Miró	Stability of the EW vacuum	

 $m_h = 124 \text{ GeV}$



J.EM, J. Espinosa, G.F. Giudice, G. Isidori, A. Riotto, A. Strumia. [hep/1112.3022]

Circular colliders: the CERN FCC project

International conceptual design study for Future Circular Colliders in a ~100 km ring: ☐ goal: pp, √s = 100 TeV (FCC-hh), L~2×10³⁵; 4 IP ☐ possible intermediate step: e⁺e⁻, √s=90-350 GeV (FCC-ee), L=2×10³⁶-2×10³⁴, 2-4 IP ☐ option: ep, √s= 3.5 TeV (FCC-eh), L~10³⁴ Goal of the study: CDR in ~2018

2020 Strategy Update

Preamble

- > Many mysteries about the universe remain to be explored: nature of dark matter, preponderance of matter over antimatter, origin and pattern of neutrino masses
- > Nature hides the secrets of the fundamental physical laws in the tiniest nooks of space and time
- Particle Physics develops technologies to probe ever smaller distance scales (higher energies)
- > The Higgs (discovered at the LHC) is a unique particle that raises profound questions about the fundamental laws of nature
 - ✓ Higgs properties study is in itself a powerful experimental tool to look for answers
 → electron-positron collider as Higgs factory
 - \checkmark Higgs boson pair-production study is key to understanding the fabric of the universe \rightarrow collider with significantly higher energies than Higgs factory
- > New realm of energies is expected to lead to new discoveries and provide answers to existing mysteries
- > The 2020 Strategy update aims to significantly extend knowledge beyond current limits, to drive innovative technological developments, to maintain Europe's leading role

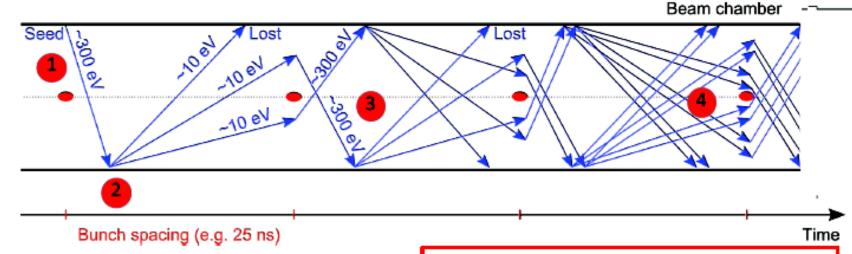
The European vision is thus to prepare a Higgs factory, followed by a future hadron collider with sensitivity to energy scales an order of magnitude higher than those of the LHC, while addressing the associated technical and environmental challenges.

The 2020 Strategy presents exciting and ambitious scientific goals that will drive technological and scientific exploration into new and uncharted territory for the benefit of the field and of society.

19/06/2020

CERN Council Open Session

6

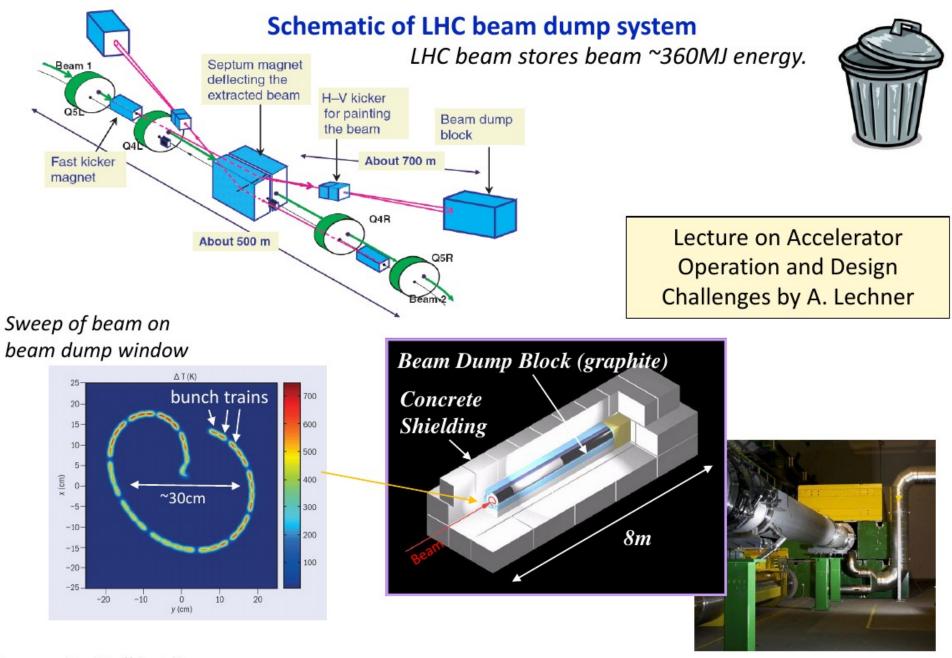

2020 Strategy Statements

Guide through the statements

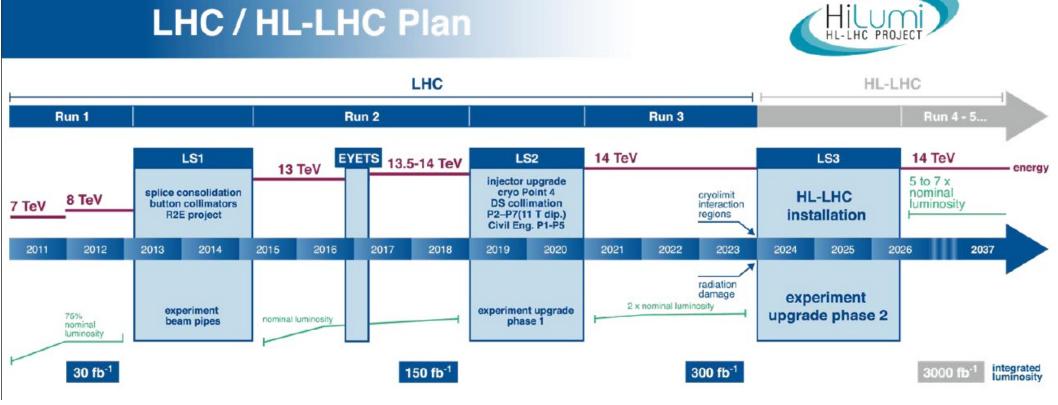
				
a) F p b) C U	tements on Major developments from the 2013 Strategy ocus on successful completion of HL-LHC upgrade remains a riority ontinued support for long-baseline experiments in Japan and IS and the Neutrino Platform	 4 statements on Other essential scientific activities a) Support for high-impact, financially implementable, experimental initiatives world-wide b) Acknowledge the essential role of theory c) Support for instrumentation R&D d) Support for computing and software infrastructure 		
a) P c b) S	tements on General considerations for the 2020 update reserve the leading role of CERN for success of European PP ommunity trengthen the European PP ecosystem of research centres	2 statements on Synergies with neighbouring fields a) Nuclear physics – cooperation with NuPECC b) Astroparticle – cooperation with APPEC		
2 sta a) + ir	cknowledge the global nature of PP research tements on High-priority future initiatives liggs factory as the highest-priority next collider and avestigation of the technical and financial feasibility of a	 3 statements on Organisational issues a) Global collaboration on projects in and out of Europe b) Relations with European Commission c) Open science 		
	uture hadron collider at CERN ïgorous R&D on innovative accelerator technologies	4 statements on Environmental and societal impact a) Mitigate environmental impact of particle physics		
	Letters for itemizing the statements are introduced for identification, do not imply prioritization	 b) Investment in next generation of researchers c) Knowledge and technology transfer d) Cultural heritage: public engagement, education and communication 		
	19/06/2020 CERN Council Open S	Session 7		

Electron cloud - One of the LHC Challenges

In high intensity accelerators with <u>positively charged beams</u> and <u>closely</u> <u>spaced bunches</u> electrons liberated from vacuum chamber surface can multiply and build up a cloud of electrons.



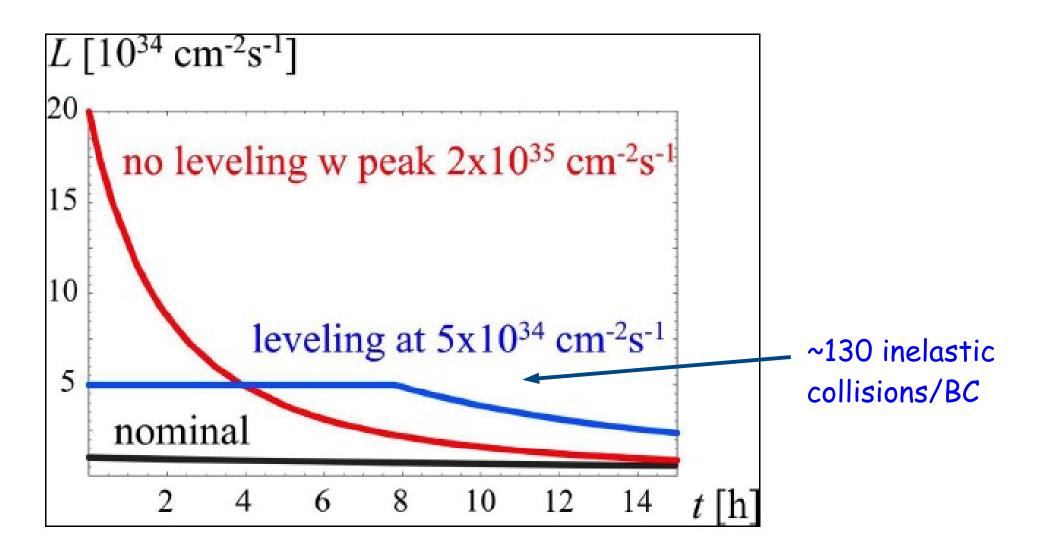
Electrons are generated through:


- Residual gas ionization
- Photo-electrons with synchrotron radiation
- Desorption from the losses on the wall

- 1) Seed electrons accelerated by beam
- Produce secondary electrons when hitting chamber
- Secondary electrons accelerated, producing more electrons on impact
- May lead to exponential growth of electron density (multipacting)
- 5) Trailing bunches interact with cloud

Beam Dump – How to safely kill the LHC beam

Source graphics: http://clipart-library.com


Hard squeeze ...

	2016	HL-LHC
β*	40 cm	15 cm
Beam size at IP (sigma)	17 um	7 um
β at triplet	~4.5 km	~20 km
Beam size at triplet	1.5 mm	2.6 mm
Crossing angle	370 urad	590 urad

The reduction in beam size buys a factor of 1.6 in luminosity but:

- Bigger beams in inner triplets and so
- Larger crossing angle
- And thus larger aperture in inner triplets is required.

Luminosity leveling

