

ASTROPARTICLE PHYSICS LECTURE 2

Matthew Malek University of Sheffield

High Energy Astroparticle Physics

Acceleration Mechanisms Sources Detection

Detection of High Energy Astroparticles

Basic principles

- \cdot Cosmic rays and high-energy γs shower in the atmosphere
 - $^{\circ}\,$ detect light emitted or induced by the shower
 - · Cherenkov radiation
 - fluorescence
 - $^{\circ}\,$ detect shower particles that reach the ground
 - much more likely for hadron-induced showers
- · Neutrinos (in general) do not shower
 - $^\circ\,$ detect products of charged-current interactions (e, $\mu,\,\tau)$
- · Ultra-high-energy neutrinos will shower in matter
 - acoustic detection of shower energy

Detection of Air Showers

Cherenkov radiation

- emitted by charged particles in the shower travelling at speeds > c/n where n is refractive index
 - forward peaked
 - faint, so requires dark skies
 - relatively low energy threshold
 - $^{\circ}\,$ works for both hadron and photon cascades—basis of ground-based $\gamma\text{-ray}$ astronomy

Nitrogen fluorescence

- UV radiation emitted by excited nitrogen molecules
 - isotropic
 - requires dark skies
- Detection of shower particles on ground
 - using water Cherenkov detectors or scintillator panels
 - higher threshold
 - not dependent on sky conditions
 - works better for hadron-induced showers

Cherenkov Radiation

- Radiation emitted by charged particle travelling faster than speed of light in a medium
 - wavefronts constructively interfere to produce cone of radiation
 - angle of cone given by
 - $\circ \cos \theta = 1/\beta n$
 - for astroparticle
 - applications usually
 - $\beta \approx 1$
 - hence in air $\theta \approx 1.3^{\circ}$
 - (depends on temperature);
 - in water $\theta \approx 41^\circ$ (40° for ice)

Cherenkov Radiation

Spectrum of radiation is given by Frank-Tamm formula:

$$rac{\partial^2 E}{\partial x\,\partial \omega} = rac{q^2}{4\pi} \mu(\omega) \omega \left(1 - rac{c^2}{v^2 n^2(\omega)}
ight)$$

- μ is permeability of medium, n its refractive index, q charge of particle, β its speed, ω emitted angular frequency, x length traversed
- · note that d $E\propto\omega$; spectrum is continuous, but
- $\cdot \,$ in general radiation is most intense at
 - high frequencies
- $^{\circ}$ Threshold given by $\beta > 1/n$
- below this no Cherenkov radiation
 - \cdot emitted
 - · basis of "threshold Cerenkov counters" used
 - for particle ID in particle physics experiments

Fluorescence

• Misnamed!

- it's really scintillation
- Emitted isotropically
 - in contrast to Cherenkov
 - Almost independent of
- primary particle species

- exciting particles are mainly e± which are produced by both electromagnetic and hadronic cascades
- $\cdot\,$ light produced \propto energy deposited in atmosphere
- Emitted light is in discrete lines in near UV
 - detection requires clear skies and nearly moonless nights

Schematic of Air-Shower Development

Gamma-induced showers have different particle content and will peak at a different height from hadron-induced showers. They also have a different morphology—note the subshowers in the hadron-induced cascade.

TeV Gamma-Ray Astronomy: Imaging Atmospheric Cherenkov Telescopes

[°] Principles (from H.E.S.S. website)

TeV Gamma-Ray Astronomy: Imaging Atmospheric Cherenkov Telescopes

- Particle identification
 - shower shape
 - broader and less regular for
 - hadron-induced showers
 - narrow cone of direct emission
 - from heavy nucleus
- Energy reconstruction
- total Cherenkov light yield

 $E_T \propto \frac{1}{C(\lambda)} \sqrt{\frac{B(\lambda)\Omega\tau}{\eta(\lambda)A}}$

- · \propto energy of primary
 - resolution typically 15-20%
 - threshold given by:

Xdirection

Off pixel

Heavy nucleus signal in HESS

- where C is Cherenkov yield, B sky background,
 - ° η photon collection efficiency, A mirror area, Ω solid angle,
 - τ integration time

o

TeV Gamma-ray Observatories

Main sites: VERITAS, HESS, CANGAROO III (stereo systems); MAGIC (single dish)

11

two since

IACT Technology: H.E.S.S. (Namibia) [IACT = Imaging Air Cherenkov Telescope]

4 telescopes each of 108 m² aperture (12 metres diameter each)

Camera array of 2048 pixels (0.07°)

H.E.S.S. II: New 28 metre telescope operational since July 2012 (lowers energy threshold to 30 GeV)

IACT Technology: VERITAS (USA)

Very similar to H.E.S.S. 4 telescopes each 110 m² 499 pixel camera

IACT Technology: MAGIC (Canary Islands)

Larger telescopes (236 m²), hence lower threshold (25 GeV); also fast slew to respond to GRB alerts

The two telescopes can operate independently

Camera has inner core of 396 1" PMTs, outer ring of 180 1.5" PMTs.

Some Results

Some blazar sources seen to vary on *very* short timescales ° (few minutes)

- plots show PKS 2155-304
- observed by HESS and Chandra
 - (Aharonian et al., A&A **502** (2009) 749)
 - flare is much larger at TeV energies
 - but TeV & x-rays correlated
 - $\cdot\,$ Explaining these fast flares is a
 - major challenge for models

- · jet Doppler factor δ , emitting region radius R, magnetic field B, ratio of electron and magnetic field comoving energy densities η , plus electron spectral distribution (modelled as broken power law in γ e with exponential cut-off at high energies)
- find $\delta = 12$, R = 1.3×10^{12} km (9 AU), B = 0.015 G, $\eta = 56$, $\langle \gamma e \rangle = 2400$
 - ultrarelativistic electrons in near-equipartition with mildly relativistic protons?
 - consistent with shock acceleration

 10^{28}

HESS as a detector of cosmic-ray electrons

Separation of electron and proton showers using multivariate analysis

Separation of electron and photon showers using Xmax (depth of shower maximum): electrons shower earlier than photons

- Future facility for TeV gamma-ray astronomy
 - three different telescope designs optimised for different energies
 - \cdot in design phase

CTA-North Site La Palma, Spain

CTA-South Site ESO Chile

Cerro Armazones E-ELT Vulcano Llullaillaco 6739 m, 190 km east

102.0

and and a state of the state of

Cherenkov Telescope Array Site

Cerro Paranal Very Large Telescope

Medium-Size Telescope (MST) 12 m mirror

Schwarzschild-Coulder Telescope (SCT) 10 m primary

Small-Size Telescope (SST) 4 m primary Large-Size Telescope (LST) 23 m mirror

- fluorescence detectors "see" large
- effective area, but have limited
 - duty cycle
 - $^{\circ}\,$ ground-based shower sampling has
 - good duty cycle, but requires
 - genuinely large area coverage to have large effective area

Ground Array Technology

- Large area ground arrays consist of multiple small stations whose data are combined to reconstruct the shower
 - detector technology scintillator (SUGAR, AGASA) or water Cherenkov (Haverah Park, Auger)
 - some detectors (AGASA, Yakutsk) also include underground muon detectors
 - individual detectors need to be robust and selfcontained
- $^{\circ}$ Energy reconstruction by
 - conversion from shower size
 - $^{\circ}$ estimated number of electrons, Ne, combined with muons, Nµ, for those experiments with muon detectors
 - · particle density at a given (large) distance from core
 - smaller fluctuations, and less sensitive to primary particle type, than shower core

Example of Ground Array

- Pierre Auger Observatory, Argentina
 - 1600 water Cherenkov tanks
 - solar powered with GPS

Example of Ground Array

Pierre Auger Observatory, Argentina

- 1600 water Cherenkov tanks
- solar powered with GPS

Energy Reconstruction in Ground Arrays

- Auger fits S(1000), shower density 1 km from core, and corrects for inclination to get S(38°)
 - calibrated by comparison with fluorescence
- AGASA used S(600), verified by comparison with Ne and Nµ
- Significant systematic errors (~20% quoted)

Direction Reconstruction in Ground Arrays

Direction is reconstructed from arrival time of shower • at different ground stations • better than 1° if >4 stations fire

• (*E* > 8 EeV)

Fluorescence Detector Technolc

- Broadly similar to Cherenkov telescop
- Expect to see
- "stripe" of light
- corresponding to
 - shower

Fluorescence Detector Technology

Auger Coll., Nucl. Instrum.Meth. A620 (2010) 227

Background Rejection

Genuine event with colours showing time progression

Fake event probably caused by cosmic ray muon interacting directly in detector

Energy Reconstruction in Fluorescence Detector

- Calorimetric detector: total light intensity measures electromagnetic energy in shower
- response calibrated using artificial
- light source and
- direct
- excitation of
- fluorescence
- with nitrogen
 - · laser

Auger Collab.

Energy Reconstruction in Fluorescence Detector

Measure longitudinal

- shower profile
- Fit to standard
- profile (Gaisser-
 - Hillas function)
 - Correct for
 - non-electromagnetic
 - energy
 - Resulting statistical error is about 10%
 - Used to calibrate ground array

Hybrid Event Schematic

Properties of Primary Cosmic Rays: Particle Content

- Particle identification by mean and variance of shower depth Xmax
- At low energies similar to
- solar system, but enhanced
 - in low Z spallation products
 - · at higher energy nearly pure
 - protons

Properties of Primary Cosmic Rays: Particle Content Some disagreement at highest energies! Auge

Energy Spectrum of UHECRs

- $^{\circ}$ Expect **GZK cut-off** at high energy owing to pion photoproduction via Δ resonance
 - $\cdot \gamma + p \rightarrow \Delta + \rightarrow p + \pi 0 \text{ (or } n + \pi +)$
 - · requires $E\gamma = 145$ MeV (150 MeV) for proton at rest
 - energy of CMB photon ~3 kB T = $7 \times 10-4$ eV on average
 - $^{\circ}\,$ so require proton γ ~2×10^{11}, i.e. Ep ~ 2×10^{20} eV
 - this is an overestimate, because protons will see high-energy tail of CMB blackbody—true cutoff is about 5×10¹⁹ eV
- Result: protons with energies $> 10^{20}$ eV lose energy as they travel
 - effective range of >GZK protons ~100 Mpc essentially independent of initial energy

Energy Spectrum of UHECRs

 $^\circ$ Expect **GZK cut-off** at high energy owing to pion photoproduction via Δ resonance

 Result: protons with energies > 10²⁰ eV lose energy as they travel

Observation of GZK Cutoff

- Seen by both Auger
- and HiRes
- apparent difference is
- consistent with
- systematic error in
 - · energy scale
 - This implies that source
 - of UHECRs are genuinel
- astrophysical objects
 - local sources, e.g. decay of some kind of superheavy metastable dark matter, would not show cutoff

Combined CR Energy Spectrum

42

Energy scales adjusted based on pair-production dip just below 10¹⁹ eV. Taken from Nagano (2009)

Cosmic Ray Anisotropy: Dipole

Consistently observed by many experiments.

Probably caused by Sun's orbital motion

Cosmic Ray Anisotropy

Small-scale anisotropy

Local source?

Magnetic field effects?

Heliotail?

Detection of UHE Gammas and CRs: Summary

- UHE astroparticles are easier to detect from the ground than from space
 - Putting large detectors covering large effective areas into space is non-trivial!
- Cherenkov, fluorescence and ground-array technologies all well established
 - each technique has advantages and disadvantages
 - · "hybrid" detectors using multiple techniques are effective
- Multiwavelength studies of interesting objects provide increasingly good constraints on models
 - \cdot relevant for TeV $\gamma\text{-rays},$ not for CRs because of lack of directionality